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Abstract
Keyboard typing patterns are a form of behavioural biometric that can be usefully employed for the purpose of user authen-
tication. The technique has been extensively investigated with respect to the typing of fixed texts such as passwords and 
pin numbers, so-called static authentication. The typical approach is to compare a current “typing sample” with a typing 
template expressed in terms of a feature vector comprised of keystroke dynamics. The feature vector approach has also 
been applied in the context of continuous authentication where features are extracted from free typing. However, the use of 
feature vectors for keystroke continuous authentication entails a number of disadvantages, mostly associated with the size 
of the feature vectors and their generation, which need to capture a large number of features to be effective; thus making the 
technique unsuitable for iterative (real-time) authentication as would be required in the case of, for example, online assess-
ments. To address this issue, a mechanism whereby iterative real-time keystroke continuous authentication can be achieved 
is proposed, by considering typing behaviour as a form of time series, that avoids the disadvantages associated with the 
feature vector approach. The reported experimental results show a significantly improved performance using the proposed 
method in comparison with the feature vector based technique.

Keywords  Keystroke Data Streams · Keystroke Time Series · Continuous Authentication

1  Introduction

The increasing prevalence of internet-facilitated distance 
learning (eLearning, Massive Open Online Courses and 
so on) has raised a requirement for techniques whereby 
the claimed identity of remote users can be authenticated. 
One frequently used authentication mechanism is through 
the use of usernames and passwords [1]; thus “once only” 
authentication. However, in the case of online assessments 
and exams (and other applications) there is a requirement 
to monitor the identity of users throughout the course of an 
entire assessment, thus “iterative” continuous authentica-
tion. One solution is to use some form of biometric such as 

continuous iris recognition or fingerprint recognition, but 
this requires specialist equipment and technology not readily 
available to the typical distance learner.

Keystroke dynamics (typing patterns) are a promising 
behavioural biometric for continuous authentication; it has 
been shown that individuals have distinctive keyboard usage 
styles [2, 3]. Early work of the usage of typing patterns for 
authentication was directed at the static context. For exam-
ple, static authentication with respect to the typing pattern, 
the rhythm, found when users typed in their credentials 
(password and username, or pin number) [4–7]. This can 
be referred to as Keystroke Static Authentication (KSA), 
static in the sense that the keys being pressed are predefined, 
or simply fixed. The alternative is Keystroke Continuous 
Authentication (KCA) where we are interested in patterns 
resulting from the typing of free text [3, 8–11]. It is the 
later we are interested in when monitoring distance learners 
undertaking online assessments and exams. However, itera-
tive KCA is a non-trivial task whereby the adopted system 
has to recognise typing patterns as typing progresses and 
regardless of what text is actually being typed. It should also 
be noted that keystroke dynamics, although frequently used 
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for KSA and KCA, has also been used in other contexts, such 
as detecting keyboard user emotions [12]

Biometric techniques, in general, comprise a two stage 
process [13]: (1) enrolment and (2) verification. The first 
is concerned with the creation of an enrolment database, 
and the second with using that database for authentication 
or identification purposes. Typically, the study of keystroke 
dynamics, as a biometric, is concerned with the timing 
information generated from key presses and releases. The 
basic timing information used is: (1) flight time ( Ft ), the 
time between n consecutive key presses; and (2) hold down 
time ( HDt ), the length of time between a key press and a key 
release. Note that in the context of flight time, when n = 1 
we talk of monographs, when n = 2 we talk of digraphs, 
when n = 3 we talk of trigraphs, and so on. Instead of flight 
time the terms latency [5] and duration [14] are also some-
times used in the literature. This timing information is uti-
lised to construct distinctive typing biometric templates for 
both enrolment and verification purposes. In the context of 
KSA and KCA such templates are also referred to as signa-
tures [11] or reference profiles [15].

To date, the most common mechanism used to build indi-
vidual templates is by constructing feature vectors based on 
keystroke timing information, regardless of whether KSA 
or KCA is being considered. Such feature vectors usually 
comprise statistical values, for example, the average and 
standard deviation of hold or flight times. In the context of 
KSA, the template is constructed for a fixed (static) text; 
enrolled users are usually requested to repeatedly type the 
fixed text several times. A previously unseen typing pro-
file can then easily be verified through comparison with the 
stored typing patterns using some statistical mechanism. 
In the context of KCA, however, the construction of tem-
plates is more challenging. The is because, by definition, 
the text to be considered is unstructured; we do not know 
in advance the expected sequence of key presses. This, in 
turn, means that our templates need to be more generic, and 
consequently more sophisticated. A common mechanism 
for defining KCA feature vector templates is to identify 
statistical details concerning the most frequently occurring 
sequences of keystrokes, n-graphs [8, 9]. For example, if ea 
and th are the most frequently occurring digraphs in a sam-
ple provided by a user, a typing template can be constructed 
using the means and standard deviations of the flight times 
for these digraphs. Consequently, for verification purposes, 
whenever a typing sample is received we can search for tem-
plates whose statical similarity (matching score) falls within 
a global threshold; if found the sample is recognised as a 
real sample, otherwise it is rejected. A criticism directed at 
this approach is that the template profile might not feature 
the same frequently occurring n-graphs as the samples to 
be authenticated, which in turn can lead to poor verifica-
tion rates. A suggested solution is to increase the number of 

training n-graphs considered to cover all possibilities, which 
in turn means that the user needs to be asked to provide 
more samples. An obvious question is how many n-graphs 
do we require to ensure that a template is sufficiently robust? 
Whatever the answer, the number of n-graphs, and hence the 
size of the required sample, is significant.

In this paper, an alternative approach to representing 
typing patterns, in the context of free text, for iterative 
KCA, is proposed. The approach uses all information 
from all keystrokes and not just selected n-graphs (thus 
a global perspective), without taking into consideration 
the actual keys pressed (what might be termed the local 
perspective). More specifically, typing activity is concep-
tualised in terms of a continuous data stream, a time series, 
comprised of a sequence of press-and-release temporal 
events {p1, p2,…} . Thus we can generate subsequences 
of keystroke time series. The intuition is that these time 
series will feature keystroke dynamic patterns unique to 
individual users. It is therefore conjectured that the shape 
of keystroke time series can provide insights to typing 
patterns, from free text, which can then be used for the 
purpose of iterative KCA. Thus by comparing a previously 
unseen keystroke time series, that is claimed to belong to a 
particular user, with stored reference templates (profiles) 
held in an enrolment database, that are known to belong to 
the claimed user, authentication can take place.

Generally speaking, there are various ways whereby 
time series can be compared. With respect to the work 
presented in this paper Dynamic Time Warping (DTW) 
was adopted for reasons that will become clear later in 
the paper. For evaluation purposes three datasets were 
used: (1) the ACB dataset generated by the authors, (2) 
the GP dataset from [10] and (3) the VHHS dataset from 
[16]. It should also be noted that the proposed mechanism 
presented in this paper is an extension of previous work 
conducted by the authors [17, 18]. The distinction between 
the work presented in [17, 18] and that presented here, is 
that, although the idea of using time series for KCA was 
proposed in both [17, 18] (multivariate time series in the 
case of the later), in both papers the idea was only consid-
ered in the once-only context, not in the iterative context 
as in the case of this paper.

The remainder of this paper is structured as follows. In 
Sect. 2 some related work concerning KCA is presented. 
This is followed in Sect. 3 with some definitions and a for-
malism concerning keystroke time series analysis. Section 4 
discusses the DTW process, the mechanism adopted with 
respect to the work presented in this paper for comparing 
keystroke time series. The proposed iterative KCA process 
is then presented in Sect. 5. The evaluation of the proposed 
approach is reported on and analysed in Sect. 6. Finally, the 
paper is concluded with a summary and some recommenda-
tions for future work in Sect. 7.
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2 � Previous Work

From the literature, and as noted above, we can broadly 
identify two categories of keystroke authentication defined 
as follows:

1.	 Keystroke static authentication (KSA)  Authentication 
directed at static (predefined) text such as passwords, 
user names, and pin numbers.

2.	 Keystroke continuous authentication (KCA)  Authenti-
cation direct at continuous (free) text.

The definitions are consistent with the definitions fre-
quently used in the literature, although not in all cases. 
The work presented in this paper is directed at KCA. In 
this paper, we also use the terms once only and iterative 
to describe the nature of the authentication. The term 
once only is used to refer to “one-time-only” authentica-
tion applied once typing has been completed, regardless 
of whether we are considering KSA or KCA. The term 
iterative then refers to a process where we are repeat-
edly conducting the authentication whilst typing is taking 
place, preferably in real-time, as required when monitoring 
online assessments and examinations. It does not make 
sense to apply iterative authentication in the context of 
KSA; thus the term iterative authentication is assumed to 
apply to KCA only; we, therefore, talk of iterative KCA. 
From the literature, however, most existing work on KCA 
has been directed at once only authentication, authentica-
tion conducted when typing has been completed.

A distinction should also be made between keystroke 
user identification and keystroke user authentication. In 
the first case, the objective is to identify a user, typically 
with respect to an enrolment database of user keystroke 
templates (profiles). For example, in an access control 
situation where all users key-in the same access code, we 
might wish to apply KSA to identify the user as an extra 
security precaution. If the keyboard pattern is not in our 
database access can be denied. In the case of user authen-
tication, we wish to check that the user is who they say 
they are, not to identify them. For example, in the case of a 
banking scenario, we might wish to apply KSA in the con-
text of an entered pin number which, it is claimed, belongs 
to a particular user, again as an extra security precaution. 
There is thus a distinction between user identification 
and authentication. The work presented in this paper is 
directed at user authentication, particularly in the context 
of users undertaking online assessments and examinations. 
Therefore, in this paper, we are considering iterative user 
authentication using KCA.

As noted from the introduction to this paper, most 
existing work on KSA and KCA, uses a feature vectors 

representation where the features stored are statistical 
quantitative equivalents of typing features (hold time and 
flight time). For the purpose of authentication, the simi-
larity between such vectors can be ascertained by meas-
uring the “distance” between vectors, for example using 
the cosine similarity measure. However, as suggested in 
this paper, this approach may not be the ideal method for 
representing free text typing patterns.

Much existing work on KCA (and KSA) is also directed 
at one time only identification and authentication; there 
has been very little work directed at iterative KCA. Some 
notable exceptions where iterative KCA has been consid-
ered can be found in [8–11]. In [8] a training set was used 
to generate a feature vector represented typing template 
repository which was then used to “identify” users (see also 
[19]). The feature vectors were constructed by computing 
the flight time means of all digraphs that featured in the 
training set. The iterative user identification was then con-
ducted by repeatedly generating “test” feature vectors for a 
given user, one every minute, and comparing with the stored 
templates. If a statistically similar match was found this indi-
cated the typer’s (user’s) identity. For evaluation purposes a 
kNN approach was used where k = 1 . Experiments were also 
conducted using a number of different methods for compar-
ing feature vectors: Euclidean distance, Mahalanobis, prob-
ability, and weighted probability. The disadvantage of the 
approach, however, was the size of the feature vectors (a 
great number of digraphs were required) and the number of 
stored templates. To minimise the search complexity, the 
authors proposed a clustering mechanism so only the most 
relevant cluster had to be searched in detail. However, this 
then meant that re-clustering was required every time a new 
user was added. The overall reported accuracy, in the context 
of user identification and iterative KCA, was 23%; not, it is 
argued here, a good result.

In [9] digraph latency (flight time) was used for the con-
struction of feature vectors. Each feature vector was gener-
ated by considering the first 500 digraphs and trigraphs in 
the input typing sample, and the most frequently occurring 
2000 keywords in the English language and determining the 
associated latency (flight) times. Valid latency times had 
to be within the range 10–750 ms. The mean and standard 
deviation (SD) of each digraph, trigraph and keyword were 
calculated and n-graphs with SD values in the top and bot-
tom 10% pruned so as to remove n-graphs that had large 
SD’s. During authentication, potential imposter samples 
were compared with a stored template and an “alert crite-
rion” adjusted accordingly. A deviation (threshold) value 
was then used to identify imposters. For evaluation of the 
process, a simulated environment was used. The metric used 
to measure the performance of the system was the False 
Acceptance Rate (FAR). Experiments were conducted 
using digraphs, trigraphs, and keywords independently and 
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in combination. Best results were obtained using digraphs. 
The reason trigraphs and keywords did not work well was 
because trigraphs did not appear as frequently as digraphs, 
and many keywords did not appear at all.

The study presented in [10] is one of the most promis-
ing studies that deal with free text analysis. In this study a 
feature vector representation was again used, however, in 
this case using the latency values (flight times) associated 
with the entire shared set of n-graphs included in the evalu-
ation dataset. The similarity between two typing samples 
was determined as follows. The latency times of all shared 
n-graphs in the two samples were extracted, and ordered (in 
ascending order of latency time) in two arrays. The differ-
ence between the order numbering of each n-graph in each 
array, the counterpart distance d, was then computed and 
summed to give a degree of disorder value.1 This was then 
used as a similarity measure, the smaller the degree of dis-
order the more similar the two typing samples. The process 
is illustrated in Fig. 1 (taken from [10]). The figure shows 
five digraphs, ic-he-th-ti-ca, that feature across two 
typing samples E1 and E2 . The digraphs are ordered accord-
ing to latency time. The associated counterpart distances are 
then {2, 0, 2, 3, 1} respectively. The similarity, sim, between 
the two samples can then be computed as:

where n is the number of shared digraphs (five in the exam-
ple). In the study, the authentication process was evalu-
ated by comparing a new sample to a collection of samples 
belonging to each enrolled users. For each user, an average 
degree of disorder value was obtained and the user with the 
lowest average value selected. This will be a computationally 
expensive process given an enrolment database of any size. 
In the reported evaluation, 600 reference templates were 
considered (generated from 40 users, each with 15 sample 

sim(E1,E2) =

∑n

i=1
di

(n2 − 1)∕2
,

one of which was used as a previously unseen sample); the 
time taken for a single match was thus substantial. Moreover, 
each typing sample comprised between 700 and 900 key-
strokes, so the average template size of each user consisted 
of 11,200 ( 14 × 800 = 11200 ) keystrokes. Another disad-
vantage of the approach was that a large number of n-graphs 
was required so that accurate authentication results could 
be obtained.

In [11] a mechanism was proposed to mitigate against 
the expense (in terms of time and size) of pattern extraction 
and template construction for iterative KCA. The idea was to 
use an Artificial Neural Network (ANN) to predict missing 
n-graphs based on the available data that subjects provided. 
A feature vector representation was again used. The features 
used were key-down time and average digraph and mono-
graph flight time. The ANN classifier was then used to build 
a prediction model with which to conduct user authentica-
tion. This mechanism worked reasonably well in a controlled 
experimental setting; typing of the same text using the same 
keyboard layout in an allocated environment. However, this 
is not the situation that will be encountered in the context of 
the real world, where iterative KCA is expected to operate.

From the above, it can be observed that most existing 
KCA studies have been directed at the usage of quantitative 
statistical measures to represent n-graph timing information 
which has been encapsulated in a feature vector format. A 
general criticism of this principle is the number of features 
that need to be included. Some of the previous work sum-
marised above seeks to mitigate against this in various ways; 
a consequent argument is that not all the available data is 
used. Therefore, it is conjectured that representing keystroke 
dynamics using time series (streams) can lead to more effec-
tive KCA. To the best knowledge of the authors, there has 
been no prior work in the literature, other than that of the 
authors [17, 18], that has considered the concept of a time 
series representation for iterative KCA. The only reference 
that the authors are aware of is [20] where a streaming algo-
rithm is introduced for which a potential suggested applica-
tion domain is KCA.

It can be argued that the proposed time series based 
method does not use all the available data in the sense that 
the actual keys that have been pressed are not recorded. The 
criticism that not all the available data is used may thus also 
be directed at the proposed system. However, the excellent 
results obtained (see Sect. 6) indicate the effectiveness of 
the proposed technique whilst, at the same time, realising 
efficiency advantages over the previously reported work on 
KCA; this suggests that in the case of the proposed system 
the fact that information concerning the actual keys is not 
used provides efficiency benefits that outweigh any argued 
disadvantage of not using all the data. In summary, the dis-
tinction, between the proposed time series based method and 
previous work, can be said to be that the proposed method 

Fig. 1   An example showing how the similarity is computed using the 
degree of disorder as proposed in [10] (the figure has been taken from 
the original study [10])

1  An idea inspired by Spearman’s rank correlation coefficient.
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uses what might be termed “global features”, whilst the pre-
vious methods use what might be termed “local features”.

3 � Keystroke Time Series Representation

Keystroke dynamics are key press-and-release temporal 
events. In combination, these events describe characteristic 
typing patterns.

Definition 1  A keystroke time series K is an ordered dis-
crete sequence of points p; K = {p1, p2,… , pn} where n is 
the length of the entire series, and each point pi is a key-
stroke event.

For each keystroke press we can obtain four timing val-
ues: (1) Key-down time KDt , (2) Key-up time KUt , (3****) 
Key-hold time KHt and (4) flight-time Ft . For any keystroke 
i, KHt

i
 can be calculated using KHt

i
= KUt

i
− KDt

i
 . The value 

for Ft
i
 can then be obtained from Ft

i
= KUt

i−1
− KDt

i
 . Since 

KHt and Ft incorporate other values these are considered the 
most important keystroke features. Thus any keystroke can 
be described by a tuple of the form ⟨KHt,Ft⟩ . Using both 
values together in a time series representation results in a 
multidimensional time series; consequently, in this paper, 

only Ft was used. The issue of multidimensional keystroke 
time series will be considered in future work for iterative 
KCA. Thus, in this paper, K = {Ft

1
,Ft

2
,…} , a series of flight 

time points.

Definition 2  A keystroke time series subsequence s, of 
length l, is a subsequence of K that starts at the point pi within 
K and ends at point pi+l−1 , thus s = {pi, pi+1,… , pi+l−1}.

A subsequence s of K is indicated using the notation 
s ⪯ K ( ∀pi ∈ s,∃pj ∈ K such that pi ≡ pj).

Definition 3  A user template (profile)   is a set of m 
previously recorded keystroke time series subsequences 
 = {s1, s2,… , sm}.

The template   will be stored in what in the field of 
biometrics is called a user enrolment database. The usage 
of   will become clear later in this paper.

Figure 2 gives four example time series, using flight time 
( Ft ), for continuous (free) texts, two for subject A and two 
for subject B, taken from the ACB evaluation dataset gener-
ated by the authors and used with respect to the evaluation 
reported on later in this paper in Sect. 6. From the figure, 
it can be observed that the keystroke time series belonging 

Fig. 2   Examples of keystroke time series: (a) and (b) time series for Subject A writing two different texts; (c) and (d) time series for Subject B 
writing two different texts
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to the same subject have clear similarities despite the series 
being related to different texts. In contrast, the keystroke 
time series associated with different subjects have clear 
dissimilarities.

The fundamental iterative KCA process presented in this 
paper operates as follows. On start up an initial subsequence 
s1 is compared with the user profile   so as to determine 
whether the user is who they say they are. The decision 
is made using a similarity threshold value tailored to the 
user’s typical typing behaviour (further detail concerning the 
generation of this threshold is presented later in Sect. 5.3). 
Assuming a positive result, each subsequent subsequence sk 
(where k > 1 ) is compared with the preceding, previously 
collected, subsequence sk−1 ; in this way changes in typing 
behaviour (if any) can be detected.

4 � Measuring Keystroke Time Series 
Similarity

The most significant element of the proposed iterative 
KCA mechanism presented in this paper is the process 
whereby pairs of keystroke time series subsequences are 
compared, either with the keystroke time series subse-
quences held in   or previously identified subsequences 
in the current data stream. Given two keystroke time series 
subsequence s1 and s2 of the same length, the simplest 
way to define their similarity is in terms of the Euclidean 
Distances (ED) between each point in s1 and the corre-
sponding point in s2 . However, the ED measurement does 
not consider the “offsets” (phase and amplitude differ-
ences) that might exist in a given time series pair. This 
can be illustrated by considering the subsequences given 
in Fig. 2a, b. Inspection of these keystroke time series 
indicates that “shapelets”, or simply the shape, within the 
two series are similar, but that the “peaks” and “troughs” 
are offset to one another. ED measurement will not capture 
this noticeable similarity.

To cope with this issue, a DTW mechanism has been 
adopted instead. This is a well-established method [21, 
22], which has been used effectively to find the similarity 
between pairs of point (time) series. It has been adopted in 
many domains such as speech recognition [23], time series 
data mining [24, 25] and pattern recognition [26, 27]. DTW 
serves to warp the linearity of sequences (even of differ-
ent lengths) so that any phase shifting can be taken into 
consideration.

In more detail, the operation of DTW can best be described 
by considering two time series s1 = {p1, p2,… , pi,… , px} 

and s2 = {q1, q2,… , qj,… , qy} , where x and y are the lengths 
of the two series respectively. In the case of the proposed 
KCA mechanism presented in this paper the time series are 
keystroke time series and the values represented by each 
point pi ∈ s1 and each point qj ∈ s2 are flight time values 
( Ft ). A matrix M of size (x − 1) × (y − 1) is then constructed 
whereby the value held at each cell mi,j ∈ M is the distance 
from point pi ∈ s1 to point qj ∈ s2:

The matrix M is used to determine a minimum warping dis-
tance (wd) which is then used as a similarity measure. A 
wd is the accumulated sum of the values associated with a 
Warping Path (WP) from cell m0,0 to cell mx−1,y−1 . A warping 
path is a sequence of cell locations, WP = {w1,w2,… ,wi} , 
such that given wk = mi,j the follow on location is either 
mi+1,j , mi,j+1 or mi+1,j+1 . The wd associated with a particular 
WD is then the sum of the values held at the locations in 
WD:

To arrive at a minimum wp, for each location the following 
location is chosen so as to minimise the accumulated wd. 

(1)mi,j =
√

(pi − qj)
2.

(2)wd =

|WP|∑

i=1

wi ∈ WP.

Fig. 3   Example minimum WP obtained using DTW applied to two 
keystroke time series subsequences generated by the same subject 
writing different texts
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The “best” warping path is thus that which serves to mini-
mise the distance from m0,0 to mx−1,y−1 . The minimum wd 
for a pair of time series can, therefore, be interpreted as an 
indicator of the similarity between the two time series. Note 
that if wd = 0 the two keystroke time series in question will 
be identical. Further detail concerning the DTW mechanism 
can be found in [21, 22].

For ease of understanding, the DTW process is illus-
trated in Figs. 3 and 4. Figure 3 shows the warping path 
that results when the DTW process is used to compare two 
keystroke time series subsequences produced by the same 
subject but writing different texts, whilst Fig. 4 shows the 
warping path that results when the DTW process is used 
to compare two keystroke time series subsequences pro-
duced by different subjects but writing the same texts. The 
white line included in the figures indicates the minimum 
WP. The distinction between the generated WPs can be 
observed from the inspection of the figures. It is also worth 
noting here that the DTW concept has similarities with 
Levenshtein Distance calculation [28], also referred to as 
Edit Distance, used for measuring the similarity between 
two strings. However, in this case, the values used are the 
number of deletions, insertions or substitutions required 
to transform the first string into the other.

5 � The Keystroke Continuous Authentication 
Process

The proposed iterative KCA process, founded on the idea 
of time series analysis as described above, is presented in 
this section. The fundamental idea is that, as typing pro-
ceeds, we repeatedly collate keystroke usage subsequences 
of length � and compare, on start up, with the subsequences 
in   ; and then, once the process is underway, with the pre-
viously collected subsequence to the current subsequence.

The basic process is given by the pseudo code in Algo-
rithm 1. The algorithm takes as input: (1) the frequency 
f with which keystroke time series subsequences are 
collected, (2) the length � of a collected subsequence 
and (3) a similarity threshold � value. Note that f can 
be set so that subsequences (windows) overlap ( f < 𝜔 ), 
subsequences abut ( f = � ) or subsequences are spaced 
( f > 𝜔 ). For the evaluation presented in Sect. 6 f = � 
was used. More specifically a range of � values was 
considered from 25 to 150 incrementing in steps of 25 
( {25, 50, 75, 100, 125, 150}).

On start up the sets s1 and s2 are initialised to ∅ (lines 1 and 
2), a keystroke counter t is initialised with the value 0 (line 3) 
and a Boolean flag isCollectingTS, indicating whether a sub-
sequence is in the process of being collected or not, initialise 
to the value false. The procedure then operates on a continu-
ous loop. On each iteration a single key press is processed; 
there are five options: (1) stop processing as the end of the 
data stream has been reached (lines 7 and 8), (2) start collat-
ing a new subsequence (lines 9 to 11), (3) subsequence col-
lation is complete therefore test the subsequence (lines 12 to 
23), (4) add the current keystroke to the current subsequence 
(lines 24 and 25) or (5) do nothing (the process is between 
subsequence collection phases). At the end of each iteration, 
the keystroke counter is incremented by one (line 27).

Whenever a subsequence of length � has been obtained 
the algorithm tests whether the subsequence contains noise 
using the function noiseReduction() (line 13), how this 
operates is described in greater detail in Sect. 5.1 below. If 
there is no previous subsequence the current subsequence 
is compared to the content of   to confirm the claimed 
identity of the user (lines 14 and 15). How this is achieved 
is described in further detail in Sect. 5.2. Otherwise DTW 
is applied using the function dtw(s1, s2) (line 17). As noted 
above, DTW generates a warping distance wd, if this dis-
tance is greater than the threshold � this is “highlighted” 
(lines 18 and 19). How this threshold is determined is 
described in Sect. 5.3 below.

Fig. 4   Example minimum WP obtained using DTW applied to two 
keystroke time series subsequences generated by the different subjects 
writing the same texts
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5.1 � Noise Reduction

The keystroke dynamic used with respect to the work pre-
sented in this paper was flight time Ft . However, it is pos-
sible that a given flight time value is greater than normal 
because the subject has paused during his/her typing (an 
away from keyboard moment); indeed this occurs in the 
test data collected by the authors and used for the evalu-
ation of the proposed approach as described in Sect. 6 
below. Essentially such high values introduce unwanted 
“noise” into the iterative KCA process. To address this 
issue, a limit was placed on the Ft values in a given time 
series subsequence si using a second threshold value � . 
In other words, given a specific Ft value in excess of � , 
the value was reduced to � . In the evaluation presented 
later in this paper a range of values for � were considered 
ranging from 0.75 to 2.00s increasing in steps of 0.25s 
( {0.75, 1.00, 1.25, 1.50, 1.75, 2.00} ). Referring back to 
Algorithm 1, noise reduction (adjustment) is conducted 
using the noiseReduction() function (line 13).

5.2 � User Authentication on Start Up

On start up, as noted above, it is first necessary to confirm 
that the subject is who (s)he says (s)he is. This is done by 
comparing the first subsequence collected, s1 , with the rel-
evant user profiles held in   (stored in a user enrolment 
database). This set of reference profiles is extracted from 
a sample typing profile K that is known to belong to the 
claimed subject and obtained previously. Note that K needs 
to be substantially greater than the maximum anticipated 
value for � so that a number of subsequence reference pro-
files can be extracted {s1, s2,…} . The initial subsequence s1 
is compared with each subsequence held in   , using DTW, 
and an average minimum wp distance w̄ obtained. This is 
then compared to a � threshold value calculated as described 
in the following section.

5.3 � Threshold Value Calculation

Rather than using a global value for � , a unique value is 
calculated for each user. This is done by comparing each 
profile in   with every other reference profile in   using 
DTW. In this manner a set of warping distance values 
WD = {wd1,wd2,…} is collected. The average value of WD 
then becomes the selected value for � . The � value derived 
in this manner is then used with respect to the iterative KCA 
process. Note that averaging warping distances of a set of 
time series result in obtaining a representative warping value 
for this set; thus it can lead to efficient and accurate clas-
sification [29].

6 � Evaluation

The evaluation of the proposed time series-based approach 
to iterative KCA is presented in this section. Experiments 
were conducted to: (1) evaluate the processing time required 
to generate a set of user profiles   for each enrolled user, 
(2) determine how well the proposed approach performed 
in terms of the detection of impersonators, and (3) conduct 
a comparison of the proposed approach with the traditional 
feature vector representation approach where the vectors 
comprise values obtained using n-graphs. The reported 
experiments were conducted using three datasets; these 
are thus presented first in Sect. 6.1. The experimental set 
up is then presented in Sect. 6.2. The metrics used for the 
evaluation were: (1) False Match Rate (FMR), (2) False 
Non-Match Rate (FNMR), and (3) authentication accuracy 
(Acc.). Note that FMR and FNMR are the standard metrics 
used to measure the performance of Biometric systems [13], 
although some researchers, in the literature, have used the 
terms FAR (False Acceptance Rate) and FRR (False Rejec-
tion Rate) instead. The experimental results obtained, with 
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respect to the above evaluation objectives, are presented in 
the Sects. 6.3–6.5.

6.1 � Datasets

The experiments presented here were conducted using three 
datasets: (1) ACB, collected by the authors, (2) GP obtained 
from [10], and (3) VHHS obtained from [16] (the identify-
ing acronyms are made up of the relevant author surnames). 
Note that each dataset comprised keystroke dynamics from 
free text sessions obtained from volunteer keyboard users; 
however, each featured differing characteristics, thus differ-
ent: (1) numbers of subjects, (2) lengths of typed samples, 
(3) subject matter (static text and/or free text) and (4) envi-
ronments in which the samples were collected (laboratory or 
free session). Each dataset is described in more detail below.

1.	 The ACB dataset was collected using undergraduates, 
postgraduates, and staff. A total of 30 subjects partici-
pated in providing answers (in English) to general ques-
tions so as to simulate the way that online assessments 
might be run. The subjects were allowed to undertake 
the exercise in their own time using whatever keyboard 
they had at hand. Each subject was requested to provide 
3 samples.

2.	 The original GP dataset described in [10] comprised 40 
subjects; however, only 31 of these were included in the 
publicly available dataset. Each recruited subject pro-
vides a total of 15 samples; each provided on a different 
day over a period of six months.

3.	 The VHHS dataset [16] consisted of both fixed text and 
free text tasks, only the free text tasks were considered 
with respect to the evaluation reported here. Subjects 
were asked to provide two free typing samples on two 
different days over a period of eleven months; however, 
the majority of subjects had provided the two samples 
over a period of one to two months. Each sample was 
produced by free typing responses to questions.

A summary of the datasets is presented in Table 1. The 
summary includes statistical values concerning the average 
length of the collected samples and the associated Standard 
Deviation (SD).

6.2 � Experimental Setup

For the evaluation, for each subject in each dataset, the 
records were split into two so that one-half could be used 
to create individual typing templates   and the other to 
simulate a typing stream. Recall that for the proposed itera-
tive KCA,   is used to: (i) derive a value for � and (ii) for 
“start-up authentication”. Although the data was collected 
in advance, to simulate a typing stream a “test harness” was 
constructed whereby the keystroke data was released in a 
manner that simulated real-time keyboard activity. Real-life 
experiments were not conducted as the authors wished to 
repeatedly use the same keyboard input data so that com-
parisons could be made. Wherever applicable twofold cross 
validation was conducted (using different halves of the key-
stroke time series to generate   ), hence results presented 
below are average results from two cross validations. For 
comparison with the established, feature vector based tech-
niques, the techniques were re-implemented and re-run. The 
implementation language used, in all cases, was Java. All 
experiments were conducted using a 2.7 GHz Intel i5 proces-
sor with 16 GB RAM.

6.3 � Generation of User Template and Threshold 
Calculation

A user template   is required prior to any iterative KCA. 
This template is also used to calculate a bespoke similar-
ity threshold value � . Table 2 gives the run-time values 
(seconds) required to generate the user template (the enrol-
ment database), and calculate the associate � values in each 
case, using a range of � values. The “per subject” values 
were obtained by dividing the total run time with the num-
ber of subjects (records) in the dataset from Table 1. From 
the table, it can be seen that, regardless of the dataset used, 
processing time increased with � . This was to be expected 
because the computation time required by the DTW would 
increase as the size of the subsequences ( � ) considered 
increased (even though there might be less of them). There 
are well-known solutions in the literature to mitigate against 
the complexity of DTW [30–32], although no such mitiga-
tion was applied with respect to the experiments reported 
here (this is left to future work).

Table 1   Summary of datasets Dataset # Subjects Environment Language # Sam-
ples/sub-
ject

Collection duration Avg. 
length/
subject

SD

ACB 30 Free English 3 1 day 4625 1207
GP 31 Free Italian 15 15 days to 6 months 7157 1095
VHHS 39 Lab. English 2 2 days to 11 months 4853 1021
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From the table, the speed at which user template is gen-
erated illustrates the efficiency of the time series based 
approach in comparison with established feature vector based 
approaches founded on n-graphs statistics during the enrol-
ment and verfication stages. This is because using the proposed 
method there is no need to search through the time series to 
identify the n-graphs of interest or any requirement for the sub-
sequent statistical feature calculation. In the case of the method 
reported on in [10] (see Sect. 2), the run-time for verifying a 
single typing sample was given as 140s. Using the same data-
set, and the proposed approach, a single verfication takes less 
than 0.153s to compute (in the worst case). A considerable 
speed up although it is acknowledged that the experiments 
reported in [10] were conducted in 2005 when processing 
power was not what it is today.

6.4 � Subject Continuous Authentication

To evaluate the effectiveness of user authentication using the 
proposed approach, for each dataset and each subject, the con-
tinuous typing process was simulated by presenting the key-
stroke dynamics for each subject in the form of a data stream. 
In each case, the data stream was appended to a randomly 
selected second data stream from another subject. The idea is 
to simulate one subject being impersonated by another half-
way through a typing session. For every comparison of every 
subsequence si with a previously stored subsequence si−1 (line 
17 in Algorithm 1, and both of length � ) we recorded whether 
this was a True Positive (TP), False Positive (FP), False Nega-
tive (FN) or True Negative (TN). In this manner a confusion 
matrix was built up from which accuracy (Acc.), False Match 
Rate (FMR) and False Non-Match Rate (FNMR) could be 
calculated (using Eqs. 3, 4 and 5 below).

(3)Acc =
TP + TN

TP + FP + FN + TN
,

(4)FMR =
FP

FP + TN
,

(5)FNMR =
FN

FN + TP
.

The exper iments were run using ranges of � 
and  �  va lue s  o f  {25, 50, 75, 100, 125, 150} and 
{0.75, 1.00, 1.25, 1.50, 1.75, 2.00} respectively. Each experi-
ment was also run twice, each time using a different half of 
the data for authentication (the other half being used for user 
profile generation).

The FMR and FNMR results are presented in Tables 3 
and 4 with respect to each dataset; the best-recorded value, 
in each case, is presented in bold font. From the table, it can 
be seen that the best FMR and FNMR values were obtained 
using � settings of 100, 125 and 150, and � = 1.25 . It can 
also be observed that the � parameter had less effect on the 
final result than the � parameter. This is interesting because 
it indicates that user authentication can be conducted using 
very small windows (25 keystrokes) although it is better to 
use some 100 keystrokes. The � value used, as shown in 
Table 2, is what dictates the efficiency of the approach; the 
higher the � value becomes the less efficient the comparison.

With respect to accuracy, � and � values of 100 and 1.25 
tended to produce best results for all three data sets. The best 
accuracy results obtained were then 98.00, 99.00 and 96.37% 
for ACB, GP and VHHS datasets respectively (see Table 5).

6.5 � Comparison with Feature Vector Approach

This section reports on the results obtained when the opera-
tion of the proposed iterative KCA method was compared 
with a feature vector based approach of the form frequently 
referenced in the literature. As noted in Sect. 2, there are 
a number of reports where a feature vectors representa-
tion, made up of keystroke dynamics related to n-graphs, 
have been applied to the KCA problem, although not in an 
iterative manner (authentication was conducted on typing 
completion). Of these, the approach described in [10] was 
selected for the comparison reported on here because: (i) 
the study obtained, to the best knowledge of the authors, 
the best reported FMR and FNMR (although referred to as 
FAR and FRR) results so far; (ii) the dataset used for the 
study was publicly available (although with some records 
missing); and (iii) the approach was well explained in the lit-
erature, therefore it was easy to reproduce. Because the study 
reported on in [10] was conducted in 2005 it was considered 

Table 2   The time taken 
(seconds) to generate user 
template   and associated � 
values

� Entire dataset Average per subject

ACB GP VHHS ACB GP VHHS

25 0.629 0.918 0.895 0.021 0.030 0.023
50 1.356 1.761 1.716 0.045 0.057 0.044
75 2.316 2.76o 2.476 0.077 0.089 0.064
100 3.243 3.696 3.333 0.108 0.119 0.086
125 4.022 4.034 3.998 0.134 0.130 0.103
150 4.324 4.727 4.534 0.144 0.153 0.116
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Table 3   The obtained FMR 
values ( % ) using different 
settings of � and �

� �

0.75 1.00 1.25 1.50 1.75 2.00

ACB
   25 0.668 0.658 0.598 0.058 0.737 1.011
   50 0.665 0.655 0.595 0.055 0.734 0.948
   75 0.661 0.651 0.591 0.051 0.730 0.944
   100 0.656 0.646 0.580 0.590 0.725 0.939
   125 0.655 0.645 0.599 0.045 0.724 0.938
   150 0.648 0.638 0.586 0.038 0.717 0.931

GP
   25 0.742 0.064 0.032 0.040 0.041 0.042
   50 0.743 0.065 0.033 0.041 0.042 0.043
   75 0.740 0.062 0.035 0.038 0.043 0.040
   100 0.741 0.063 0.031 0.033 0.038 0.035
   125 0.741 0.063 0.031 0.033 0.033 0.036
   150 0.745 0.067 0.035 0.034 0.034 0.036

VHHS
   25 2.267 1.228 1.048 1.078 1.071 1.092
   50 2.178 1.225 1.045 1.075 1.068 1.089
   75 2.177 1.227 1.047 1.077 1.070 1.091
   100 2.177 1.225 1.045 1.075 1.068 1.089
   125 2.175 1.228 1.040 1.078 1.071 1.092
   150 2.175 1.227 1.047 1.077 1.070 1.091

Table 4   The obtained FNMR 
values ( % ) using different 
settings of � and �

� �

0.75 1.00 1.25 1.50 1.75 2.00

ACB
   25 2.000 2.070 2.025 2.030 2.025 2.029
   50 2.020 2.090 1.990 1.980 1.980 1.990
   75 1.952 2.022 1.990 1.980 1.984 1.960
   100 1.989 2.059 1.970 1.972 1.980 1.980
   125 1.995 2.065 1.979 1.979 1.979 1.980
   150 1.980 2.050 1.978 1.976 1.979 1.981

GP
   25 1.456 1.871 1.101 1.160 1.161 1.136
   50 1.451 1.866 1.096 1.155 1.156 1.131
   75 1.450 1.865 1.096 1.154 1.155 1.130
   100 1.445 1.860 1.095 1.149 1.150 1.125
   125 1.457 1.872 1.102 1.161 1.162 1.137
   150 1.449 1.864 1.094 1.153 1.154 1.129

VHHS
   25 3.033 2.131 2.052 2.077 2.068 2.060
   50 3.035 2.133 2.051 2.079 2.070 2.062
   75 3.027 2.125 2.052 2.071 2.062 2.057
   100 3.030 2.128 2.050 2.074 2.065 2.053
   125 3.027 2.125 2.049 2.071 2.062 2.054
   150 3.031 2.129 2.050 2.075 2.066 2.055
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inappropriate to compare directly with the results reported, 
instead, the approach was re-implemented and re-run in an 
iterative manner, as described for the proposed system, so 
that meaningful comparisons could be made. The features 
used were the  t values for all shared digraph, trigraphs 
and quadgraphs in each dataset. Authentication was other-
wise conducted for each user as described in [10] (see also 
Sect. 2). The metrics used were, again, FMR, FNMR and 
Acc.

The results are presented in Table 5. For comparison pur-
poses, the results for the proposed iterative KCA approach 
have been included in the table. From the table, it can be 
observed that the proposed time series-based approach to 
iterative KCA obtained a much better performance than the 
feature vector-based approach (the baseline approach), with 
respect to all three datasets. This, therefore, confirmed the 
hypothesis posed by the authors that a time series represen-
tation would serve to more effectively encapsulate keystroke 
dynamics than the feature vector based approach that has 
typically been adopted to date. It should also be noted here 
that the FMR and FNMR result obtained for the GP dataset, 
of 6.05 and 2.06% respectively, are worse than the 5.00% 
and 0.005% reported in the original study [10], despite using 
the same mechanism. It is conjectured that this is because 
of the change in the dataset size that had occurred since 
the original study and that reported here, where the original 
dataset consisted of 40 subjects, but the publicly available 
version only had 31 subjects (see Sect. 6.1). Also, in [10], 
an additional 165 samples that served as imposter samples 
were used.

7 � Conclusion

In this paper, a novel mechanism for iterative KCA has 
been presented. The idea is to use sequences of keystroke 
dynamics in the form of time series and to monitor such time 
series, as a continuous data stream, by periodically extract-
ing subsequences from these time series and authenticating 
the subsequences. In the proposed process, on start up, the 
first subsequence extracted for a given subject was compared 
to a set of reference profiles (time series) in the typing tem-
plate; each subsequent subsequences si was then compared to 
its immediate predecessor subsequence si−1 . In this manner 

iterative (repeated) subject authentication was undertaken. 
The initial advantage offered is that the time series approach 
is very efficient and thus well suited to iterative KCA. The 
window size ( � ) used did not have to be very large, � = 100 
produced best results although a window size of only � = 25 
still produce good results. In terms of accuracy, a best over-
all accuracy of 97.8% was recorded compared to the best 
overall average accuracy of 83.7% when an established fea-
ture vector based technique was used (founded on the work 
presented in [10]). The mechanism whereby the � threshold 
was calculated, unique to each individual, is also of interest, 
as is the noise reduction mechanism using the � parameter. 
For future work, the authors intend to investigate the use of 
3D time series for iterative KCA, made up of hold time and 
flight time.
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