
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz
https://doi.org/10.1007/s13218-018-0526-z

RESEARCH PROJECT

Iterative Keystroke Continuous Authentication: A Time Series Based
Approach

Abdullah Alshehri1  · Frans Coenen1 · Danushka Bollegala1

© The Author(s) 2018. This article is an open access publication

Abstract
Keyboard typing patterns are a form of behavioural biometric that can be usefully employed for the purpose of user authen-
tication. The technique has been extensively investigated with respect to the typing of fixed texts such as passwords and
pin numbers, so-called static authentication. The typical approach is to compare a current “typing sample” with a typing
template expressed in terms of a feature vector comprised of keystroke dynamics. The feature vector approach has also
been applied in the context of continuous authentication where features are extracted from free typing. However, the use of
feature vectors for keystroke continuous authentication entails a number of disadvantages, mostly associated with the size
of the feature vectors and their generation, which need to capture a large number of features to be effective; thus making the
technique unsuitable for iterative (real-time) authentication as would be required in the case of, for example, online assess-
ments. To address this issue, a mechanism whereby iterative real-time keystroke continuous authentication can be achieved
is proposed, by considering typing behaviour as a form of time series, that avoids the disadvantages associated with the
feature vector approach. The reported experimental results show a significantly improved performance using the proposed
method in comparison with the feature vector based technique.

Keywords  Keystroke Data Streams · Keystroke Time Series · Continuous Authentication

1  Introduction

The increasing prevalence of internet-facilitated distance
learning (eLearning, Massive Open Online Courses and
so on) has raised a requirement for techniques whereby
the claimed identity of remote users can be authenticated.
One frequently used authentication mechanism is through
the use of usernames and passwords [1]; thus “once only”
authentication. However, in the case of online assessments
and exams (and other applications) there is a requirement
to monitor the identity of users throughout the course of an
entire assessment, thus “iterative” continuous authentica-
tion. One solution is to use some form of biometric such as

continuous iris recognition or fingerprint recognition, but
this requires specialist equipment and technology not readily
available to the typical distance learner.

Keystroke dynamics (typing patterns) are a promising
behavioural biometric for continuous authentication; it has
been shown that individuals have distinctive keyboard usage
styles [2, 3]. Early work of the usage of typing patterns for
authentication was directed at the static context. For exam-
ple, static authentication with respect to the typing pattern,
the rhythm, found when users typed in their credentials
(password and username, or pin number) [4–7]. This can
be referred to as Keystroke Static Authentication (KSA),
static in the sense that the keys being pressed are predefined,
or simply fixed. The alternative is Keystroke Continuous
Authentication (KCA) where we are interested in patterns
resulting from the typing of free text [3, 8–11]. It is the
later we are interested in when monitoring distance learners
undertaking online assessments and exams. However, itera-
tive KCA is a non-trivial task whereby the adopted system
has to recognise typing patterns as typing progresses and
regardless of what text is actually being typed. It should also
be noted that keystroke dynamics, although frequently used

 *	 Abdullah Alshehri
	 a.a.alshehri@liverpool.ac.uk

	 Frans Coenen
	 coenen@liverpool.ac.uk

	 Danushka Bollegala
	 danushka.bollegala@liverpool.ac.uk

1	 University of Liverpool, Liverpool L69 3BX, UK

http://orcid.org/0000-0003-0008-9394
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-018-0526-z&domain=pdf

	 KI - Künstliche Intelligenz

1 3

for KSA and KCA, has also been used in other contexts, such
as detecting keyboard user emotions [12]

Biometric techniques, in general, comprise a two stage
process [13]: (1) enrolment and (2) verification. The first
is concerned with the creation of an enrolment database,
and the second with using that database for authentication
or identification purposes. Typically, the study of keystroke
dynamics, as a biometric, is concerned with the timing
information generated from key presses and releases. The
basic timing information used is: (1) flight time ( Ft ), the
time between n consecutive key presses; and (2) hold down
time ( HDt ), the length of time between a key press and a key
release. Note that in the context of flight time, when n = 1
we talk of monographs, when n = 2 we talk of digraphs,
when n = 3 we talk of trigraphs, and so on. Instead of flight
time the terms latency [5] and duration [14] are also some-
times used in the literature. This timing information is uti-
lised to construct distinctive typing biometric templates for
both enrolment and verification purposes. In the context of
KSA and KCA such templates are also referred to as signa-
tures [11] or reference profiles [15].

To date, the most common mechanism used to build indi-
vidual templates is by constructing feature vectors based on
keystroke timing information, regardless of whether KSA
or KCA is being considered. Such feature vectors usually
comprise statistical values, for example, the average and
standard deviation of hold or flight times. In the context of
KSA, the template is constructed for a fixed (static) text;
enrolled users are usually requested to repeatedly type the
fixed text several times. A previously unseen typing pro-
file can then easily be verified through comparison with the
stored typing patterns using some statistical mechanism.
In the context of KCA, however, the construction of tem-
plates is more challenging. The is because, by definition,
the text to be considered is unstructured; we do not know
in advance the expected sequence of key presses. This, in
turn, means that our templates need to be more generic, and
consequently more sophisticated. A common mechanism
for defining KCA feature vector templates is to identify
statistical details concerning the most frequently occurring
sequences of keystrokes, n-graphs [8, 9]. For example, if ea
and th are the most frequently occurring digraphs in a sam-
ple provided by a user, a typing template can be constructed
using the means and standard deviations of the flight times
for these digraphs. Consequently, for verification purposes,
whenever a typing sample is received we can search for tem-
plates whose statical similarity (matching score) falls within
a global threshold; if found the sample is recognised as a
real sample, otherwise it is rejected. A criticism directed at
this approach is that the template profile might not feature
the same frequently occurring n-graphs as the samples to
be authenticated, which in turn can lead to poor verifica-
tion rates. A suggested solution is to increase the number of

training n-graphs considered to cover all possibilities, which
in turn means that the user needs to be asked to provide
more samples. An obvious question is how many n-graphs
do we require to ensure that a template is sufficiently robust?
Whatever the answer, the number of n-graphs, and hence the
size of the required sample, is significant.

In this paper, an alternative approach to representing
typing patterns, in the context of free text, for iterative
KCA, is proposed. The approach uses all information
from all keystrokes and not just selected n-graphs (thus
a global perspective), without taking into consideration
the actual keys pressed (what might be termed the local
perspective). More specifically, typing activity is concep-
tualised in terms of a continuous data stream, a time series,
comprised of a sequence of press-and-release temporal
events {p1, p2,…} . Thus we can generate subsequences
of keystroke time series. The intuition is that these time
series will feature keystroke dynamic patterns unique to
individual users. It is therefore conjectured that the shape
of keystroke time series can provide insights to typing
patterns, from free text, which can then be used for the
purpose of iterative KCA. Thus by comparing a previously
unseen keystroke time series, that is claimed to belong to a
particular user, with stored reference templates (profiles)
held in an enrolment database, that are known to belong to
the claimed user, authentication can take place.

Generally speaking, there are various ways whereby
time series can be compared. With respect to the work
presented in this paper Dynamic Time Warping (DTW)
was adopted for reasons that will become clear later in
the paper. For evaluation purposes three datasets were
used: (1) the ACB dataset generated by the authors, (2)
the GP dataset from [10] and (3) the VHHS dataset from
[16]. It should also be noted that the proposed mechanism
presented in this paper is an extension of previous work
conducted by the authors [17, 18]. The distinction between
the work presented in [17, 18] and that presented here, is
that, although the idea of using time series for KCA was
proposed in both [17, 18] (multivariate time series in the
case of the later), in both papers the idea was only consid-
ered in the once-only context, not in the iterative context
as in the case of this paper.

The remainder of this paper is structured as follows. In
Sect. 2 some related work concerning KCA is presented.
This is followed in Sect. 3 with some definitions and a for-
malism concerning keystroke time series analysis. Section 4
discusses the DTW process, the mechanism adopted with
respect to the work presented in this paper for comparing
keystroke time series. The proposed iterative KCA process
is then presented in Sect. 5. The evaluation of the proposed
approach is reported on and analysed in Sect. 6. Finally, the
paper is concluded with a summary and some recommenda-
tions for future work in Sect. 7.

KI - Künstliche Intelligenz	

1 3

2 � Previous Work

From the literature, and as noted above, we can broadly
identify two categories of keystroke authentication defined
as follows:

1.	 Keystroke static authentication (KSA) Authentication
directed at static (predefined) text such as passwords,
user names, and pin numbers.

2.	 Keystroke continuous authentication (KCA) Authenti-
cation direct at continuous (free) text.

The definitions are consistent with the definitions fre-
quently used in the literature, although not in all cases.
The work presented in this paper is directed at KCA. In
this paper, we also use the terms once only and iterative
to describe the nature of the authentication. The term
once only is used to refer to “one-time-only” authentica-
tion applied once typing has been completed, regardless
of whether we are considering KSA or KCA. The term
iterative then refers to a process where we are repeat-
edly conducting the authentication whilst typing is taking
place, preferably in real-time, as required when monitoring
online assessments and examinations. It does not make
sense to apply iterative authentication in the context of
KSA; thus the term iterative authentication is assumed to
apply to KCA only; we, therefore, talk of iterative KCA.
From the literature, however, most existing work on KCA
has been directed at once only authentication, authentica-
tion conducted when typing has been completed.

A distinction should also be made between keystroke
user identification and keystroke user authentication. In
the first case, the objective is to identify a user, typically
with respect to an enrolment database of user keystroke
templates (profiles). For example, in an access control
situation where all users key-in the same access code, we
might wish to apply KSA to identify the user as an extra
security precaution. If the keyboard pattern is not in our
database access can be denied. In the case of user authen-
tication, we wish to check that the user is who they say
they are, not to identify them. For example, in the case of a
banking scenario, we might wish to apply KSA in the con-
text of an entered pin number which, it is claimed, belongs
to a particular user, again as an extra security precaution.
There is thus a distinction between user identification
and authentication. The work presented in this paper is
directed at user authentication, particularly in the context
of users undertaking online assessments and examinations.
Therefore, in this paper, we are considering iterative user
authentication using KCA.

As noted from the introduction to this paper, most
existing work on KSA and KCA, uses a feature vectors

representation where the features stored are statistical
quantitative equivalents of typing features (hold time and
flight time). For the purpose of authentication, the simi-
larity between such vectors can be ascertained by meas-
uring the “distance” between vectors, for example using
the cosine similarity measure. However, as suggested in
this paper, this approach may not be the ideal method for
representing free text typing patterns.

Much existing work on KCA (and KSA) is also directed
at one time only identification and authentication; there
has been very little work directed at iterative KCA. Some
notable exceptions where iterative KCA has been consid-
ered can be found in [8–11]. In [8] a training set was used
to generate a feature vector represented typing template
repository which was then used to “identify” users (see also
[19]). The feature vectors were constructed by computing
the flight time means of all digraphs that featured in the
training set. The iterative user identification was then con-
ducted by repeatedly generating “test” feature vectors for a
given user, one every minute, and comparing with the stored
templates. If a statistically similar match was found this indi-
cated the typer’s (user’s) identity. For evaluation purposes a
kNN approach was used where k = 1 . Experiments were also
conducted using a number of different methods for compar-
ing feature vectors: Euclidean distance, Mahalanobis, prob-
ability, and weighted probability. The disadvantage of the
approach, however, was the size of the feature vectors (a
great number of digraphs were required) and the number of
stored templates. To minimise the search complexity, the
authors proposed a clustering mechanism so only the most
relevant cluster had to be searched in detail. However, this
then meant that re-clustering was required every time a new
user was added. The overall reported accuracy, in the context
of user identification and iterative KCA, was 23%; not, it is
argued here, a good result.

In [9] digraph latency (flight time) was used for the con-
struction of feature vectors. Each feature vector was gener-
ated by considering the first 500 digraphs and trigraphs in
the input typing sample, and the most frequently occurring
2000 keywords in the English language and determining the
associated latency (flight) times. Valid latency times had
to be within the range 10–750 ms. The mean and standard
deviation (SD) of each digraph, trigraph and keyword were
calculated and n-graphs with SD values in the top and bot-
tom 10% pruned so as to remove n-graphs that had large
SD’s. During authentication, potential imposter samples
were compared with a stored template and an “alert crite-
rion” adjusted accordingly. A deviation (threshold) value
was then used to identify imposters. For evaluation of the
process, a simulated environment was used. The metric used
to measure the performance of the system was the False
Acceptance Rate (FAR). Experiments were conducted
using digraphs, trigraphs, and keywords independently and

	 KI - Künstliche Intelligenz

1 3

in combination. Best results were obtained using digraphs.
The reason trigraphs and keywords did not work well was
because trigraphs did not appear as frequently as digraphs,
and many keywords did not appear at all.

The study presented in [10] is one of the most promis-
ing studies that deal with free text analysis. In this study a
feature vector representation was again used, however, in
this case using the latency values (flight times) associated
with the entire shared set of n-graphs included in the evalu-
ation dataset. The similarity between two typing samples
was determined as follows. The latency times of all shared
n-graphs in the two samples were extracted, and ordered (in
ascending order of latency time) in two arrays. The differ-
ence between the order numbering of each n-graph in each
array, the counterpart distance d, was then computed and
summed to give a degree of disorder value.1 This was then
used as a similarity measure, the smaller the degree of dis-
order the more similar the two typing samples. The process
is illustrated in Fig. 1 (taken from [10]). The figure shows
five digraphs, ic-he-th-ti-ca, that feature across two
typing samples E1 and E2 . The digraphs are ordered accord-
ing to latency time. The associated counterpart distances are
then {2, 0, 2, 3, 1} respectively. The similarity, sim, between
the two samples can then be computed as:

where n is the number of shared digraphs (five in the exam-
ple). In the study, the authentication process was evalu-
ated by comparing a new sample to a collection of samples
belonging to each enrolled users. For each user, an average
degree of disorder value was obtained and the user with the
lowest average value selected. This will be a computationally
expensive process given an enrolment database of any size.
In the reported evaluation, 600 reference templates were
considered (generated from 40 users, each with 15 sample

sim(E1,E2) =

∑n

i=1
di

(n2 − 1)∕2
,

one of which was used as a previously unseen sample); the
time taken for a single match was thus substantial. Moreover,
each typing sample comprised between 700 and 900 key-
strokes, so the average template size of each user consisted
of 11,200 ( 14 × 800 = 11200 ) keystrokes. Another disad-
vantage of the approach was that a large number of n-graphs
was required so that accurate authentication results could
be obtained.

In [11] a mechanism was proposed to mitigate against
the expense (in terms of time and size) of pattern extraction
and template construction for iterative KCA. The idea was to
use an Artificial Neural Network (ANN) to predict missing
n-graphs based on the available data that subjects provided.
A feature vector representation was again used. The features
used were key-down time and average digraph and mono-
graph flight time. The ANN classifier was then used to build
a prediction model with which to conduct user authentica-
tion. This mechanism worked reasonably well in a controlled
experimental setting; typing of the same text using the same
keyboard layout in an allocated environment. However, this
is not the situation that will be encountered in the context of
the real world, where iterative KCA is expected to operate.

From the above, it can be observed that most existing
KCA studies have been directed at the usage of quantitative
statistical measures to represent n-graph timing information
which has been encapsulated in a feature vector format. A
general criticism of this principle is the number of features
that need to be included. Some of the previous work sum-
marised above seeks to mitigate against this in various ways;
a consequent argument is that not all the available data is
used. Therefore, it is conjectured that representing keystroke
dynamics using time series (streams) can lead to more effec-
tive KCA. To the best knowledge of the authors, there has
been no prior work in the literature, other than that of the
authors [17, 18], that has considered the concept of a time
series representation for iterative KCA. The only reference
that the authors are aware of is [20] where a streaming algo-
rithm is introduced for which a potential suggested applica-
tion domain is KCA.

It can be argued that the proposed time series based
method does not use all the available data in the sense that
the actual keys that have been pressed are not recorded. The
criticism that not all the available data is used may thus also
be directed at the proposed system. However, the excellent
results obtained (see Sect. 6) indicate the effectiveness of
the proposed technique whilst, at the same time, realising
efficiency advantages over the previously reported work on
KCA; this suggests that in the case of the proposed system
the fact that information concerning the actual keys is not
used provides efficiency benefits that outweigh any argued
disadvantage of not using all the data. In summary, the dis-
tinction, between the proposed time series based method and
previous work, can be said to be that the proposed method

Fig. 1   An example showing how the similarity is computed using the
degree of disorder as proposed in [10] (the figure has been taken from
the original study [10])

1  An idea inspired by Spearman’s rank correlation coefficient.

KI - Künstliche Intelligenz	

1 3

uses what might be termed “global features”, whilst the pre-
vious methods use what might be termed “local features”.

3 � Keystroke Time Series Representation

Keystroke dynamics are key press-and-release temporal
events. In combination, these events describe characteristic
typing patterns.

Definition 1  A keystroke time series K is an ordered dis-
crete sequence of points p; K = {p1, p2,… , pn} where n is
the length of the entire series, and each point pi is a key-
stroke event.

For each keystroke press we can obtain four timing val-
ues: (1) Key-down time KDt , (2) Key-up time KUt , (3****)
Key-hold time KHt and (4) flight-time Ft . For any keystroke
i, KHt

i
 can be calculated using KHt

i
= KUt

i
− KDt

i
 . The value

for Ft
i
 can then be obtained from Ft

i
= KUt

i−1
− KDt

i
 . Since

KHt and Ft incorporate other values these are considered the
most important keystroke features. Thus any keystroke can
be described by a tuple of the form ⟨KHt,Ft⟩ . Using both
values together in a time series representation results in a
multidimensional time series; consequently, in this paper,

only Ft was used. The issue of multidimensional keystroke
time series will be considered in future work for iterative
KCA. Thus, in this paper, K = {Ft

1
,Ft

2
,…} , a series of flight

time points.

Definition 2  A keystroke time series subsequence s, of
length l, is a subsequence of K that starts at the point pi within
K and ends at point pi+l−1 , thus s = {pi, pi+1,… , pi+l−1}.

A subsequence s of K is indicated using the notation
s ⪯ K ( ∀pi ∈ s,∃pj ∈ K such that pi ≡ pj).

Definition 3  A user template (profile)  is a set of m
previously recorded keystroke time series subsequences
 = {s1, s2,… , sm}.

The template  will be stored in what in the field of
biometrics is called a user enrolment database. The usage
of  will become clear later in this paper.

Figure 2 gives four example time series, using flight time
( Ft ), for continuous (free) texts, two for subject A and two
for subject B, taken from the ACB evaluation dataset gener-
ated by the authors and used with respect to the evaluation
reported on later in this paper in Sect. 6. From the figure,
it can be observed that the keystroke time series belonging

Fig. 2   Examples of keystroke time series: (a) and (b) time series for Subject A writing two different texts; (c) and (d) time series for Subject B
writing two different texts

	 KI - Künstliche Intelligenz

1 3

to the same subject have clear similarities despite the series
being related to different texts. In contrast, the keystroke
time series associated with different subjects have clear
dissimilarities.

The fundamental iterative KCA process presented in this
paper operates as follows. On start up an initial subsequence
s1 is compared with the user profile  so as to determine
whether the user is who they say they are. The decision
is made using a similarity threshold value tailored to the
user’s typical typing behaviour (further detail concerning the
generation of this threshold is presented later in Sect. 5.3).
Assuming a positive result, each subsequent subsequence sk
(where k > 1 ) is compared with the preceding, previously
collected, subsequence sk−1 ; in this way changes in typing
behaviour (if any) can be detected.

4 � Measuring Keystroke Time Series
Similarity

The most significant element of the proposed iterative
KCA mechanism presented in this paper is the process
whereby pairs of keystroke time series subsequences are
compared, either with the keystroke time series subse-
quences held in  or previously identified subsequences
in the current data stream. Given two keystroke time series
subsequence s1 and s2 of the same length, the simplest
way to define their similarity is in terms of the Euclidean
Distances (ED) between each point in s1 and the corre-
sponding point in s2 . However, the ED measurement does
not consider the “offsets” (phase and amplitude differ-
ences) that might exist in a given time series pair. This
can be illustrated by considering the subsequences given
in Fig. 2a, b. Inspection of these keystroke time series
indicates that “shapelets”, or simply the shape, within the
two series are similar, but that the “peaks” and “troughs”
are offset to one another. ED measurement will not capture
this noticeable similarity.

To cope with this issue, a DTW mechanism has been
adopted instead. This is a well-established method [21,
22], which has been used effectively to find the similarity
between pairs of point (time) series. It has been adopted in
many domains such as speech recognition [23], time series
data mining [24, 25] and pattern recognition [26, 27]. DTW
serves to warp the linearity of sequences (even of differ-
ent lengths) so that any phase shifting can be taken into
consideration.

In more detail, the operation of DTW can best be described
by considering two time series s1 = {p1, p2,… , pi,… , px}

and s2 = {q1, q2,… , qj,… , qy} , where x and y are the lengths
of the two series respectively. In the case of the proposed
KCA mechanism presented in this paper the time series are
keystroke time series and the values represented by each
point pi ∈ s1 and each point qj ∈ s2 are flight time values
( Ft ). A matrix M of size (x − 1) × (y − 1) is then constructed
whereby the value held at each cell mi,j ∈ M is the distance
from point pi ∈ s1 to point qj ∈ s2:

The matrix M is used to determine a minimum warping dis-
tance (wd) which is then used as a similarity measure. A
wd is the accumulated sum of the values associated with a
Warping Path (WP) from cell m0,0 to cell mx−1,y−1 . A warping
path is a sequence of cell locations, WP = {w1,w2,… ,wi} ,
such that given wk = mi,j the follow on location is either
mi+1,j , mi,j+1 or mi+1,j+1 . The wd associated with a particular
WD is then the sum of the values held at the locations in
WD:

To arrive at a minimum wp, for each location the following
location is chosen so as to minimise the accumulated wd.

(1)mi,j =
√

(pi − qj)
2.

(2)wd =

|WP|∑

i=1

wi ∈ WP.

Fig. 3   Example minimum WP obtained using DTW applied to two
keystroke time series subsequences generated by the same subject
writing different texts

KI - Künstliche Intelligenz	

1 3

The “best” warping path is thus that which serves to mini-
mise the distance from m0,0 to mx−1,y−1 . The minimum wd
for a pair of time series can, therefore, be interpreted as an
indicator of the similarity between the two time series. Note
that if wd = 0 the two keystroke time series in question will
be identical. Further detail concerning the DTW mechanism
can be found in [21, 22].

For ease of understanding, the DTW process is illus-
trated in Figs. 3 and 4. Figure 3 shows the warping path
that results when the DTW process is used to compare two
keystroke time series subsequences produced by the same
subject but writing different texts, whilst Fig. 4 shows the
warping path that results when the DTW process is used
to compare two keystroke time series subsequences pro-
duced by different subjects but writing the same texts. The
white line included in the figures indicates the minimum
WP. The distinction between the generated WPs can be
observed from the inspection of the figures. It is also worth
noting here that the DTW concept has similarities with
Levenshtein Distance calculation [28], also referred to as
Edit Distance, used for measuring the similarity between
two strings. However, in this case, the values used are the
number of deletions, insertions or substitutions required
to transform the first string into the other.

5 � The Keystroke Continuous Authentication
Process

The proposed iterative KCA process, founded on the idea
of time series analysis as described above, is presented in
this section. The fundamental idea is that, as typing pro-
ceeds, we repeatedly collate keystroke usage subsequences
of length � and compare, on start up, with the subsequences
in   ; and then, once the process is underway, with the pre-
viously collected subsequence to the current subsequence.

The basic process is given by the pseudo code in Algo-
rithm 1. The algorithm takes as input: (1) the frequency
f with which keystroke time series subsequences are
collected, (2) the length � of a collected subsequence
and (3) a similarity threshold � value. Note that f can
be set so that subsequences (windows) overlap ( f < 𝜔 ),
subsequences abut ( f = � ) or subsequences are spaced
( f > 𝜔 ). For the evaluation presented in Sect. 6 f = �
was used. More specifically a range of � values was
considered from 25 to 150 incrementing in steps of 25
( {25, 50, 75, 100, 125, 150}).

On start up the sets s1 and s2 are initialised to ∅ (lines 1 and
2), a keystroke counter t is initialised with the value 0 (line 3)
and a Boolean flag isCollectingTS, indicating whether a sub-
sequence is in the process of being collected or not, initialise
to the value false. The procedure then operates on a continu-
ous loop. On each iteration a single key press is processed;
there are five options: (1) stop processing as the end of the
data stream has been reached (lines 7 and 8), (2) start collat-
ing a new subsequence (lines 9 to 11), (3) subsequence col-
lation is complete therefore test the subsequence (lines 12 to
23), (4) add the current keystroke to the current subsequence
(lines 24 and 25) or (5) do nothing (the process is between
subsequence collection phases). At the end of each iteration,
the keystroke counter is incremented by one (line 27).

Whenever a subsequence of length � has been obtained
the algorithm tests whether the subsequence contains noise
using the function noiseReduction() (line 13), how this
operates is described in greater detail in Sect. 5.1 below. If
there is no previous subsequence the current subsequence
is compared to the content of  to confirm the claimed
identity of the user (lines 14 and 15). How this is achieved
is described in further detail in Sect. 5.2. Otherwise DTW
is applied using the function dtw(s1, s2) (line 17). As noted
above, DTW generates a warping distance wd, if this dis-
tance is greater than the threshold � this is “highlighted”
(lines 18 and 19). How this threshold is determined is
described in Sect. 5.3 below.

Fig. 4   Example minimum WP obtained using DTW applied to two
keystroke time series subsequences generated by the different subjects
writing the same texts

	 KI - Künstliche Intelligenz

1 3

5.1 � Noise Reduction

The keystroke dynamic used with respect to the work pre-
sented in this paper was flight time Ft . However, it is pos-
sible that a given flight time value is greater than normal
because the subject has paused during his/her typing (an
away from keyboard moment); indeed this occurs in the
test data collected by the authors and used for the evalu-
ation of the proposed approach as described in Sect. 6
below. Essentially such high values introduce unwanted
“noise” into the iterative KCA process. To address this
issue, a limit was placed on the Ft values in a given time
series subsequence si using a second threshold value � .
In other words, given a specific Ft value in excess of � ,
the value was reduced to � . In the evaluation presented
later in this paper a range of values for � were considered
ranging from 0.75 to 2.00s increasing in steps of 0.25s
( {0.75, 1.00, 1.25, 1.50, 1.75, 2.00} ). Referring back to
Algorithm 1, noise reduction (adjustment) is conducted
using the noiseReduction() function (line 13).

5.2 � User Authentication on Start Up

On start up, as noted above, it is first necessary to confirm
that the subject is who (s)he says (s)he is. This is done by
comparing the first subsequence collected, s1 , with the rel-
evant user profiles held in  (stored in a user enrolment
database). This set of reference profiles is extracted from
a sample typing profile K that is known to belong to the
claimed subject and obtained previously. Note that K needs
to be substantially greater than the maximum anticipated
value for � so that a number of subsequence reference pro-
files can be extracted {s1, s2,…} . The initial subsequence s1
is compared with each subsequence held in   , using DTW,
and an average minimum wp distance w̄ obtained. This is
then compared to a � threshold value calculated as described
in the following section.

5.3 � Threshold Value Calculation

Rather than using a global value for � , a unique value is
calculated for each user. This is done by comparing each
profile in  with every other reference profile in  using
DTW. In this manner a set of warping distance values
WD = {wd1,wd2,…} is collected. The average value of WD
then becomes the selected value for � . The � value derived
in this manner is then used with respect to the iterative KCA
process. Note that averaging warping distances of a set of
time series result in obtaining a representative warping value
for this set; thus it can lead to efficient and accurate clas-
sification [29].

6 � Evaluation

The evaluation of the proposed time series-based approach
to iterative KCA is presented in this section. Experiments
were conducted to: (1) evaluate the processing time required
to generate a set of user profiles  for each enrolled user,
(2) determine how well the proposed approach performed
in terms of the detection of impersonators, and (3) conduct
a comparison of the proposed approach with the traditional
feature vector representation approach where the vectors
comprise values obtained using n-graphs. The reported
experiments were conducted using three datasets; these
are thus presented first in Sect. 6.1. The experimental set
up is then presented in Sect. 6.2. The metrics used for the
evaluation were: (1) False Match Rate (FMR), (2) False
Non-Match Rate (FNMR), and (3) authentication accuracy
(Acc.). Note that FMR and FNMR are the standard metrics
used to measure the performance of Biometric systems [13],
although some researchers, in the literature, have used the
terms FAR (False Acceptance Rate) and FRR (False Rejec-
tion Rate) instead. The experimental results obtained, with

KI - Künstliche Intelligenz	

1 3

respect to the above evaluation objectives, are presented in
the Sects. 6.3–6.5.

6.1 � Datasets

The experiments presented here were conducted using three
datasets: (1) ACB, collected by the authors, (2) GP obtained
from [10], and (3) VHHS obtained from [16] (the identify-
ing acronyms are made up of the relevant author surnames).
Note that each dataset comprised keystroke dynamics from
free text sessions obtained from volunteer keyboard users;
however, each featured differing characteristics, thus differ-
ent: (1) numbers of subjects, (2) lengths of typed samples,
(3) subject matter (static text and/or free text) and (4) envi-
ronments in which the samples were collected (laboratory or
free session). Each dataset is described in more detail below.

1.	 The ACB dataset was collected using undergraduates,
postgraduates, and staff. A total of 30 subjects partici-
pated in providing answers (in English) to general ques-
tions so as to simulate the way that online assessments
might be run. The subjects were allowed to undertake
the exercise in their own time using whatever keyboard
they had at hand. Each subject was requested to provide
3 samples.

2.	 The original GP dataset described in [10] comprised 40
subjects; however, only 31 of these were included in the
publicly available dataset. Each recruited subject pro-
vides a total of 15 samples; each provided on a different
day over a period of six months.

3.	 The VHHS dataset [16] consisted of both fixed text and
free text tasks, only the free text tasks were considered
with respect to the evaluation reported here. Subjects
were asked to provide two free typing samples on two
different days over a period of eleven months; however,
the majority of subjects had provided the two samples
over a period of one to two months. Each sample was
produced by free typing responses to questions.

A summary of the datasets is presented in Table 1. The
summary includes statistical values concerning the average
length of the collected samples and the associated Standard
Deviation (SD).

6.2 � Experimental Setup

For the evaluation, for each subject in each dataset, the
records were split into two so that one-half could be used
to create individual typing templates  and the other to
simulate a typing stream. Recall that for the proposed itera-
tive KCA,  is used to: (i) derive a value for � and (ii) for
“start-up authentication”. Although the data was collected
in advance, to simulate a typing stream a “test harness” was
constructed whereby the keystroke data was released in a
manner that simulated real-time keyboard activity. Real-life
experiments were not conducted as the authors wished to
repeatedly use the same keyboard input data so that com-
parisons could be made. Wherever applicable twofold cross
validation was conducted (using different halves of the key-
stroke time series to generate   ), hence results presented
below are average results from two cross validations. For
comparison with the established, feature vector based tech-
niques, the techniques were re-implemented and re-run. The
implementation language used, in all cases, was Java. All
experiments were conducted using a 2.7 GHz Intel i5 proces-
sor with 16 GB RAM.

6.3 � Generation of User Template and Threshold
Calculation

A user template  is required prior to any iterative KCA.
This template is also used to calculate a bespoke similar-
ity threshold value � . Table 2 gives the run-time values
(seconds) required to generate the user template (the enrol-
ment database), and calculate the associate � values in each
case, using a range of � values. The “per subject” values
were obtained by dividing the total run time with the num-
ber of subjects (records) in the dataset from Table 1. From
the table, it can be seen that, regardless of the dataset used,
processing time increased with � . This was to be expected
because the computation time required by the DTW would
increase as the size of the subsequences ( � ) considered
increased (even though there might be less of them). There
are well-known solutions in the literature to mitigate against
the complexity of DTW [30–32], although no such mitiga-
tion was applied with respect to the experiments reported
here (this is left to future work).

Table 1   Summary of datasets Dataset # Subjects Environment Language # Sam-
ples/sub-
ject

Collection duration Avg.
length/
subject

SD

ACB 30 Free English 3 1 day 4625 1207
GP 31 Free Italian 15 15 days to 6 months 7157 1095
VHHS 39 Lab. English 2 2 days to 11 months 4853 1021

	 KI - Künstliche Intelligenz

1 3

From the table, the speed at which user template is gen-
erated illustrates the efficiency of the time series based
approach in comparison with established feature vector based
approaches founded on n-graphs statistics during the enrol-
ment and verfication stages. This is because using the proposed
method there is no need to search through the time series to
identify the n-graphs of interest or any requirement for the sub-
sequent statistical feature calculation. In the case of the method
reported on in [10] (see Sect. 2), the run-time for verifying a
single typing sample was given as 140s. Using the same data-
set, and the proposed approach, a single verfication takes less
than 0.153s to compute (in the worst case). A considerable
speed up although it is acknowledged that the experiments
reported in [10] were conducted in 2005 when processing
power was not what it is today.

6.4 � Subject Continuous Authentication

To evaluate the effectiveness of user authentication using the
proposed approach, for each dataset and each subject, the con-
tinuous typing process was simulated by presenting the key-
stroke dynamics for each subject in the form of a data stream.
In each case, the data stream was appended to a randomly
selected second data stream from another subject. The idea is
to simulate one subject being impersonated by another half-
way through a typing session. For every comparison of every
subsequence si with a previously stored subsequence si−1 (line
17 in Algorithm 1, and both of length � ) we recorded whether
this was a True Positive (TP), False Positive (FP), False Nega-
tive (FN) or True Negative (TN). In this manner a confusion
matrix was built up from which accuracy (Acc.), False Match
Rate (FMR) and False Non-Match Rate (FNMR) could be
calculated (using Eqs. 3, 4 and 5 below).

(3)Acc =
TP + TN

TP + FP + FN + TN
,

(4)FMR =
FP

FP + TN
,

(5)FNMR =
FN

FN + TP
.

The exper iments were run using ranges of �
and � va lue s o f {25, 50, 75, 100, 125, 150} and
{0.75, 1.00, 1.25, 1.50, 1.75, 2.00} respectively. Each experi-
ment was also run twice, each time using a different half of
the data for authentication (the other half being used for user
profile generation).

The FMR and FNMR results are presented in Tables 3
and 4 with respect to each dataset; the best-recorded value,
in each case, is presented in bold font. From the table, it can
be seen that the best FMR and FNMR values were obtained
using � settings of 100, 125 and 150, and � = 1.25 . It can
also be observed that the � parameter had less effect on the
final result than the � parameter. This is interesting because
it indicates that user authentication can be conducted using
very small windows (25 keystrokes) although it is better to
use some 100 keystrokes. The � value used, as shown in
Table 2, is what dictates the efficiency of the approach; the
higher the � value becomes the less efficient the comparison.

With respect to accuracy, � and � values of 100 and 1.25
tended to produce best results for all three data sets. The best
accuracy results obtained were then 98.00, 99.00 and 96.37%
for ACB, GP and VHHS datasets respectively (see Table 5).

6.5 � Comparison with Feature Vector Approach

This section reports on the results obtained when the opera-
tion of the proposed iterative KCA method was compared
with a feature vector based approach of the form frequently
referenced in the literature. As noted in Sect. 2, there are
a number of reports where a feature vectors representa-
tion, made up of keystroke dynamics related to n-graphs,
have been applied to the KCA problem, although not in an
iterative manner (authentication was conducted on typing
completion). Of these, the approach described in [10] was
selected for the comparison reported on here because: (i)
the study obtained, to the best knowledge of the authors,
the best reported FMR and FNMR (although referred to as
FAR and FRR) results so far; (ii) the dataset used for the
study was publicly available (although with some records
missing); and (iii) the approach was well explained in the lit-
erature, therefore it was easy to reproduce. Because the study
reported on in [10] was conducted in 2005 it was considered

Table 2   The time taken
(seconds) to generate user
template  and associated �
values

� Entire dataset Average per subject

ACB GP VHHS ACB GP VHHS

25 0.629 0.918 0.895 0.021 0.030 0.023
50 1.356 1.761 1.716 0.045 0.057 0.044
75 2.316 2.76o 2.476 0.077 0.089 0.064
100 3.243 3.696 3.333 0.108 0.119 0.086
125 4.022 4.034 3.998 0.134 0.130 0.103
150 4.324 4.727 4.534 0.144 0.153 0.116

KI - Künstliche Intelligenz	

1 3

Table 3   The obtained FMR
values ( % ) using different
settings of � and �

� �

0.75 1.00 1.25 1.50 1.75 2.00

ACB
 25 0.668 0.658 0.598 0.058 0.737 1.011
 50 0.665 0.655 0.595 0.055 0.734 0.948
 75 0.661 0.651 0.591 0.051 0.730 0.944
 100 0.656 0.646 0.580 0.590 0.725 0.939
 125 0.655 0.645 0.599 0.045 0.724 0.938
 150 0.648 0.638 0.586 0.038 0.717 0.931

GP
 25 0.742 0.064 0.032 0.040 0.041 0.042
 50 0.743 0.065 0.033 0.041 0.042 0.043
 75 0.740 0.062 0.035 0.038 0.043 0.040
 100 0.741 0.063 0.031 0.033 0.038 0.035
 125 0.741 0.063 0.031 0.033 0.033 0.036
 150 0.745 0.067 0.035 0.034 0.034 0.036

VHHS
 25 2.267 1.228 1.048 1.078 1.071 1.092
 50 2.178 1.225 1.045 1.075 1.068 1.089
 75 2.177 1.227 1.047 1.077 1.070 1.091
 100 2.177 1.225 1.045 1.075 1.068 1.089
 125 2.175 1.228 1.040 1.078 1.071 1.092
 150 2.175 1.227 1.047 1.077 1.070 1.091

Table 4   The obtained FNMR
values ( % ) using different
settings of � and �

� �

0.75 1.00 1.25 1.50 1.75 2.00

ACB
 25 2.000 2.070 2.025 2.030 2.025 2.029
 50 2.020 2.090 1.990 1.980 1.980 1.990
 75 1.952 2.022 1.990 1.980 1.984 1.960
 100 1.989 2.059 1.970 1.972 1.980 1.980
 125 1.995 2.065 1.979 1.979 1.979 1.980
 150 1.980 2.050 1.978 1.976 1.979 1.981

GP
 25 1.456 1.871 1.101 1.160 1.161 1.136
 50 1.451 1.866 1.096 1.155 1.156 1.131
 75 1.450 1.865 1.096 1.154 1.155 1.130
 100 1.445 1.860 1.095 1.149 1.150 1.125
 125 1.457 1.872 1.102 1.161 1.162 1.137
 150 1.449 1.864 1.094 1.153 1.154 1.129

VHHS
 25 3.033 2.131 2.052 2.077 2.068 2.060
 50 3.035 2.133 2.051 2.079 2.070 2.062
 75 3.027 2.125 2.052 2.071 2.062 2.057
 100 3.030 2.128 2.050 2.074 2.065 2.053
 125 3.027 2.125 2.049 2.071 2.062 2.054
 150 3.031 2.129 2.050 2.075 2.066 2.055

	 KI - Künstliche Intelligenz

1 3

inappropriate to compare directly with the results reported,
instead, the approach was re-implemented and re-run in an
iterative manner, as described for the proposed system, so
that meaningful comparisons could be made. The features
used were the  t values for all shared digraph, trigraphs
and quadgraphs in each dataset. Authentication was other-
wise conducted for each user as described in [10] (see also
Sect. 2). The metrics used were, again, FMR, FNMR and
Acc.

The results are presented in Table 5. For comparison pur-
poses, the results for the proposed iterative KCA approach
have been included in the table. From the table, it can be
observed that the proposed time series-based approach to
iterative KCA obtained a much better performance than the
feature vector-based approach (the baseline approach), with
respect to all three datasets. This, therefore, confirmed the
hypothesis posed by the authors that a time series represen-
tation would serve to more effectively encapsulate keystroke
dynamics than the feature vector based approach that has
typically been adopted to date. It should also be noted here
that the FMR and FNMR result obtained for the GP dataset,
of 6.05 and 2.06% respectively, are worse than the 5.00%
and 0.005% reported in the original study [10], despite using
the same mechanism. It is conjectured that this is because
of the change in the dataset size that had occurred since
the original study and that reported here, where the original
dataset consisted of 40 subjects, but the publicly available
version only had 31 subjects (see Sect. 6.1). Also, in [10],
an additional 165 samples that served as imposter samples
were used.

7 � Conclusion

In this paper, a novel mechanism for iterative KCA has
been presented. The idea is to use sequences of keystroke
dynamics in the form of time series and to monitor such time
series, as a continuous data stream, by periodically extract-
ing subsequences from these time series and authenticating
the subsequences. In the proposed process, on start up, the
first subsequence extracted for a given subject was compared
to a set of reference profiles (time series) in the typing tem-
plate; each subsequent subsequences si was then compared to
its immediate predecessor subsequence si−1 . In this manner

iterative (repeated) subject authentication was undertaken.
The initial advantage offered is that the time series approach
is very efficient and thus well suited to iterative KCA. The
window size ( � ) used did not have to be very large, � = 100
produced best results although a window size of only � = 25
still produce good results. In terms of accuracy, a best over-
all accuracy of 97.8% was recorded compared to the best
overall average accuracy of 83.7% when an established fea-
ture vector based technique was used (founded on the work
presented in [10]). The mechanism whereby the � threshold
was calculated, unique to each individual, is also of interest,
as is the noise reduction mechanism using the � parameter.
For future work, the authors intend to investigate the use of
3D time series for iterative KCA, made up of hold time and
flight time.

Acknowledgements  The authors would like to express their thanks
to those who participated in the collection of the data and to Laureate
Online Education b.v. for their support.

Open Access  This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Bours P (2012) Continuous keystroke dynamics: A different
perspective towards biometric evaluation. Inf Secur Tech Rep
17(1):36–43

	 2.	 Gaines RS, Lisowski W, Press SJ, Norman S (1980) Authenti-
cation by keystroke timing: some preliminary results. Technical
report, DTIC Document. RAND Corp Santa Monica CA

	 3.	 Shepherd SJ (1995) Continuous authentication by analysis of key-
board typing characteristics. In: Security and Detection, European
Convention on. IET, pp 111–114

	 4.	 Bleha S, Slivinsky C, Hussien B (1990) Computer-access security
systems using keystroke dynamics. IEEE Trans Pattern Anal Mach
Intell 12(12):1217–1222

	 5.	 Rick Joyce, Gopal Gupta (1990) Identity authentication based on
keystroke latencies. Commun ACM 33(2):168–176

	 6.	 Ogihara A, Matsumuar H, Shiozaki A (2006) Biometric verifica-
tion using keystroke motion and key press timing for atm user
authentication. In: Intelligent Signal Processing and Commu-
nications. ISPACS’06. International Symposium on. IEEE, pp
223–226

Table 5   Comparison of
proposed time series-based
KCA with n-graphs feature
vector-based KCA taken from
[10]

Dataset Proposed time series-based KCA Method of [10] (baseline)

FMR FNMR Acc. FMR FNMR Acc.

ACB 0.58 1.97 98.02 11.10 8.60 80.82
GP 0.03 1.09 99.00 6.05 2.06 90.15
VHHS 1.02 2.04 96.37 9.09 7.13 89.15
Average 0.54 1.64 97.80 8.75 5.93 83.71

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

KI - Künstliche Intelligenz	

1 3

	 7.	 Syed Z, Banerjee S, Cukic B (2014) Normalizing variations in
feature vector structure in keystroke dynamics authentication sys-
tems. Softw Qual J:1–21

	 8.	 Monrose F, Rubin A (1997) Authentication via keystroke dynam-
ics. In: Proceedings of the 4th ACM conference on Computer and
communications security. ACM, New York, pp 48–56

	 9.	 Dowland PS, Furnell SM (2004) A long-term trial of keystroke
profiling using digraph, trigraph and keyword latencies. In: Secu-
rity and Protection in Information Processing Systems. Springer,
New York, pp 275–289

	10.	 Gunetti D, Picardi C (2005) Keystroke analysis of free text. ACM
Trans Inf Syst Secur (TISSEC) 8(3):312–347

	11.	 Ahmed AA, Traore I (2014) Biometric recognition based on free-
text keystroke dynamics. Cybern IEEE Trans 44(4):458–472

	12.	 Raja M, Sigg S (2016) Applicability of rf-based methods for emo-
tion recognition: a survey. In: 2016 IEEE International Confer-
ence on Pervasive Computing and Communication Workshops
(PerCom Workshops). IEEE, pp 1–6

	13.	 Unar JA, Seng WC, Abbasi A (2014) A review of biometric
technology along with trends and prospects. Pattern Recognit
47(8):2673–2688

	14.	 Bergadano F, Gunetti D, Picardi C (2002) User authentication
through keystroke dynamics. ACM Trans Inf Syst Secur (TISSEC)
5(4):367–397

	15.	 Dowland PS, Furnell SM, Papadaki M (2002) Keystroke analy-
sis as a method of advanced user authentication and response.
In: Security in the Information Society. Springer, New York, pp
215–226

	16.	 Vural E, Huang J, Hou D, Schuckers S (2014) Shared research
dataset to support development of keystroke authentication. In:
Biometrics (IJCB), 2014 IEEE International Joint Conference on.
IEEE, pp 1–8

	17.	 Alshehri A, Coenen F, Bollegala D (2016a) Towards keystroke
continuous authentication using time series analytics. In: Proc. AI
2016, Research and Development in Intelligent Systems XXXIII.
Springer, New York, pp 325–338

	18.	 Alshehri A, Coenen F, Bollegala D (2016b) Keyboard usage
authentication using time series analysis. In: International Confer-
ence on Big Data Analytics and Knowledge Discovery. Springer,
New York, pp 239–252

	19.	 Monrosea F, Rubinb AD (2000) Keystroke dynamics as a biomet-
ric for authentication. Future Gener Comput Syst 16(4):351–359

	20.	 Richardson A, Kaminka GA, Kraus S (2014) Reef: Resolving
length bias in frequent sequence mining using sampling. Int J Adv
Intell Syst 7(1):2

	21.	 Berndt DJ, Clifford J (1994) Using dynamic time warping to find
patterns in time series. In: Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining. ACM,
New York, pp 359–370

	22.	 Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008)
Querying and mining of time series data: experimental compari-
son of representations and distance measures. Proc VLDB Endow-
ment 1(2):1542–1552

	23.	 Rabiner L, Juang B-H (1993) Fundamentals of speech recognition.
Prentice Hall, Upper Saddle River

	24.	 Bagnall AJ, Janacek GJ (2004) Clustering time series from arma
models with clipped data. In: Proceedings of the tenth ACM SIG-
KDD international conference on Knowledge discovery and data
mining. ACM, New York, pp 49–58

	25.	 Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008)
Querying and mining of time series data: experimental compari-
son of representations and distance measures. Proc VLDB Endow
1(2):1542–1552

	26.	 Berndt DJ, Clifford J (1994) Using dynamic time warping to find
patterns in time series. In: KDD workshop. Seattle, pp 359–370

	27.	 Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh
E (2013) Experimental comparison of representation methods and
distance measures for time series data. Data Min Knowl Discov
26(2):275–309

	28.	 Levenshtein VI (1966) Binary codes capable of correcting dele-
tions, insertions, and reversals. Sov Phys Dokl 10(8):707–710

	29.	 Niennattrakul V, Ratanamahatana CA (2009) Shape averag-
ing under time warping. In: Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology.
ECTI-CON 2009. 6th International Conference on, vol 2. IEEE,
pp 626–629

	30.	 Itakura F (1975) Minimum prediction residual principle applied
to speech recognition. IEEE Trans Acoust Speech Signal Process
23:52–72

	31.	 Sakoe H, Chiba S (1978) Dynamic programming algorithm opti-
mization fro spoken word recognition. IEEE Trans Acoust Speech
Signal Process 26:43–49

	32.	 Silva DF, Batista GE (2016) Speeding up all-pairwise dynamic
time warping matrix calculation. In: Proceedings of the 2016
SIAM International Conference on Data Mining. SIAM, pp
837–845

	Iterative Keystroke Continuous Authentication: A Time Series Based Approach
	Abstract
	1 Introduction
	2 Previous Work
	3 Keystroke Time Series Representation
	4 Measuring Keystroke Time Series Similarity
	5 The Keystroke Continuous Authentication Process
	5.1 Noise Reduction
	5.2 User Authentication on Start Up
	5.3 Threshold Value Calculation

	6 Evaluation
	6.1 Datasets
	6.2 Experimental Setup
	6.3 Generation of User Template and Threshold Calculation
	6.4 Subject Continuous Authentication
	6.5 Comparison with Feature Vector Approach

	7 Conclusion
	Acknowledgements
	References

