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Abstract

Despite the growing interest in prediction-based word embedding learning methods, it 1

remains unclear as to how the vector spaces learnt by the prediction-based methods 2

differ from that of the counting-based methods, or whether one can be transformed into 3

the other. To study the relationship between counting-based and prediction-based 4

embeddings, we propose a method for learning a linear transformation between two 5

given sets of word embeddings. Our proposal contributes to the word embedding 6

learning research in three ways: (a) we propose an efficient method to learn a linear 7

transformation between two sets of word embeddings, (b) using the transformation 8

learnt in (a), we empirically show that it is possible to predict distributed word 9

embeddings for novel unseen words, and (c) empirically it is possible to linearly 10

transform counting-based embeddings to prediction-based embeddings, for frequent 11

words, different POS categories, and varying degrees of ambiguities. 12

1 Introduction 13

Representing the meaning of a word is a fundamental task in Natural Language 14

Processing (NLP). Two main approaches for computing word embeddings can be 15

identified in the literature: counting-based approaches, and prediction-based 16

approaches [1]. 17

Counting-based methods represent a target word by the words that co-occur with 18

that target word in various contexts using some co-occurrence measure [2]. Following 19

the distributional hypothesis that states the meaning of a word can be represented using 20

the words that co-occur with that word in different contexts, for example, the words 21

that co-occur with the word cat such as pet food, dog, cute etc. can be used to represent 22

the meaning of cat. Various association measures such as the pointwise mutual 23

information (PMI), χ2 measure, log likelihood ratio (LLR) have been proposed in the 24

literature for measuring the strength of the co-occurres between two words. Any word 25

in the vocabulary (i.e. the set consisting of all words in a language) can appear in a 26

co-occurring context. Consequently, under counting-based approaches, a word is 27

represented in a high dimensional (in practice dimensionality greater than 105 are 28

common) vector space. However, among all the words in the vocabulary only a handful 29

of words will be co-occurring with any given word. Therefore, counting-based 30
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embeddings tend to be highly sparse. This becomes problematic when applying 31

counting-based word embeddings as features for representing words in downstream NLP 32

applications such as similarity measurement, or sentiment classification because of 33

feature sparseness. To overcome these disfluencies associated with counting-based word 34

embeddings dimensionality reduction methods such as Singular Value Decomposition 35

(SVD) are often used as a post-processing step. 36

Prediction-based word embedding learning methods [3–5] on the other hand update 37

fixed dimensional word vectors (possibly randomly initialized) such that we can 38

accurately predict the words that appear in a target word in a given context. 39

Prediction-based methods have reported impressive performances across a wide range of 40

NLP tasks such as sentiment classification [6], named entity recognition [7], semantic 41

role labeling [8], and machine translation [9]. Prediction-based word embedding learning 42

methods produce lower dimensional (ca. 100− 1000 dimensions are common) and dense 43

word representations. The vector spaces spanned by the prediction-based embeddings 44

are known to demonstrate a certain level of linear structure where subtraction of word 45

embeddings result in vectors that represent the semantic relationships between two 46

words. For example, embedding produced by v(king)− v(man) + v(woman) is shown to 47

be similar to v(queen), where we use the notation v(x) to denote the embedding of the 48

word x. Unfortunately, the lower-dimensional dense embeddings produced by the 49

prediction-based methods are difficult to interpret compared to the high-dimensional 50

and sparse representations produced by the counting-based methods where each 51

dimension can be explicitly identified with a context word. 52

Despite the success stories of prediction-based embeddings, we understand very little 53

about how they differ from their counting-based counterparts. Levy et al. [10] 54

empirically showed that the differences between the two types of embeddings can be 55

mainly attributable to the differences in hyperparameter settings and pre-processing 56

steps. Intuitively, given that both types of embeddings are learnt from the same source 57

of data, we would expect some relationship between prediction-based and 58

counting-based embeddings. More specifically, because of the high-dimensionality of the 59

counting-based embeddings, they could potentially preserve the information captured by 60

the prediction-based embeddings. 61

But how can we investigate the relationship between these two types of embeddings? 62

Because the two types of embeddings have different dimensionalities, a direct 63

comparison is impossible. However, if the counting-based methods truly capture the 64

same information as the prediction-based methods, then we must be able to recover 65

prediction-based embeddings from the counting-based embeddings. In other words, 66

there must exist a projection from the high-dimensional, counting-based 67

word-embedding space to the low-dimensional, prediction-based word-embedding space. 68

In this paper, we investigate such a projection with the simplest possible 69

setting—linearity. We propose a method that learns the optimal linear transformation 70

between two given sets of embeddings in a supervised way (i.e., the error between the 71

target and the transformed embeddings is minimized). Because of the cheap 72

computational cost, the linearity assumption allows us to compare a large number (ca. 73

400k) of word embeddings to obtain statistically reliable results. Moreover, if word 74

embeddings can be converted using linear projections, then it provides empirical 75

evidence to the fact that the vector spaces learnt by the prediction-based word 76

embedding learning methods are linear in structure. 77

Our experiments bring a few surprising results (Sections 4.1 and 4.2). First, when a 78

transformation is sufficiently optimized in terms of the training error, the projected 79

embeddings achieve the same performance as the prediction-based embeddings in 80

similarity measurement tasks. Moreover, it is possible to learn accurate linear 81

transformations for frequent words, irrespective POS category. These results plausibly 82
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support our hypothesis: the counting-based methods inclusively contain the same 83

information as the prediction-based methods. 84

Aside from the above-mentioned findings, the linear transformation method itself is 85

useful. One disadvantage of prediction-based methods is that we must retrain all word 86

embeddings when we want to learn the word embeddings for novel words that were later 87

added to the corpus. On the other hand, it is relatively easier to create counting-based 88

word embeddings for a novel word because we require contexts in which only that novel 89

word occurs. In Section 4.2, we show that the word embeddings predicted using the 90

linear transformations learnt by the proposed method correctly predict the semantic 91

similarity and word analogies in several benchmark datasets. 92

2 Related Work 93

Word embedding learning has received a renewed interest lately due to the impressive 94

performances obtained by the prediction-based word embedding learning methods in a 95

wide range of NLP applications such as sentiment classification [6, 11, 12], named entity 96

recognition [13,14], word sense disambiguation [15,16], relation extraction [17,18], 97

semantic role labeling [8], and machine translation [9]. 98

Mikolov et al. [4] proposed prediction-based two word embedding learning methods: 99

skip-gram with negative sampling (SGNS), and the continuous bag-of-words model 100

(CBOW). In SGNS, the word embedding for a target word is learnt such that we can 101

correctly predict each of the context words in a given co-occurrence context such as a 102

sentence or a pre-defined fixed window of tokens. On the other hand, in CBOW, all 103

words in a given context are used to jointly predict a particular target word. A log 104

bi-linear model is used to approximate the probability of two words co-occurring in a 105

given context. The word embeddings are learnt such that the likelihood of the 106

predictions is maximized over the entire corpus. 107

Pennington et al. [3] proposed global vector prediction (GloVe), a prediction-based 108

word embedding learning method, where word embeddings of the target and context 109

words are learnt such that they can accurately predict the logarithm of the 110

co-occurrence count between those two words. Unlike, SGNS or CBOW, GloVe 111

considers the global co-occurrences of two words computed over the entire corpus. 112

However, our goal in this work is not to propose a new word embedding learning 113

method, but to learn a linear transformation between two given sets of word 114

embeddings. In Section 3.2, we describe several prediction-based word embedding 115

learning methods such as the global vector representation (GloVe) [3], continuous 116

bag-of-words model (CBOW), and skip-gram with negative sampling (SGNS) [19], 117

which we use in our evaluations. 118

Levy et al. [10] empirically showed that the differences in performances obtained 119

using counting-based and prediction-based embeddings can be largely attributable to 120

the different hyperparameter settings and pre-processing steps. Moreover, some 121

prediction-based word embedding learning methods such as GloVe and SGNS have been 122

shown to factorize some form of a transformed co-occurrence matrix, similar to the ones 123

used by the counting-based word embedding methods [20–22]. Such prior studies hint at 124

a close relationship between the two approaches for learning word embeddings. 125

Faruqui et al. [23] created non-distributional word embeddings using attributes 126

specific to words from a collection of manually created lexical resources. These word 127

representations are high-dimensional and sparse. The dimensions of these word 128

representations are interpretable because they correspond to various relations defined in 129

the lexical resources. The linear transformation we learn between counting-based and 130

prediction-based embeddings can be seen as an empirical method to interpret the 131

implicit dimensions in the prediction-based embeddings using a linear combination of 132
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the explicit dimensions in the counting-based embeddings. We can use the 133

non-distributional word representations created by Faruqui et al. [23] as one of the 134

source embeddings in our proposed method. 135

Mitchell and Steedman [24] observed that word embeddings can be decomposed into 136

semantic and syntactic components. They proposed a method for learning word 137

embeddings that encode word-order and morphology that outperformed embeddings 138

trained using CBOW, SGNS and GloVe. We believe the insights we obtain in this paper 139

about the structure of the vector spaces learnt by the word embedding learning methods 140

will be useful to further improve word embedding learning methods. 141

3 Method 142

As introduced in Section 1, two main approaches exist for learning word embeddings: 143

counting- and prediction-based. Given two sets of vector embeddings defined over a 144

common vocabulary, in Section 3.1, we propose a method that learns a linear 145

transformation between the vector spaces spanned by the two sets of embeddings. Next, 146

in Section 3.2, the learnt linear transformation is used to study the differences between 147

several counting-based and prediction-based embeddings. 148

The reasons for limiting the transformations we consider to linear ones are two-fold. 149

First, most prediction-based word embedding learning methods differ only in the way 150

they optimize different loss functions measuring the accuracy of the prediction, and how 151

they set the numerous hyperparameters [10] . Moreover, prediction-based embedding 152

learning methods such as GloVe and SGNS can be seen as factorizing word 153

co-occurrence matrices transformed by suitable operations such as the logarithm of the 154

co-occurrence frequency or shifted positive pointwise mutual information 155

(PPMI) [20,21]. Therefore, it is reasonable to assume that linear relationships would 156

hold between embeddings learnt by different methods at least for the majority of the 157

words. More importantly, we can empirically evaluate the deviation from the learnt 158

linear transformation for any given word, thereby obtaining useful insights as to how 159

the existing embedding learning methods differ in practice. 160

Second, in contrast to learning linear transformations, learning multivariate 161

non-linear relationships between large sets of vectors is computationally expensive [25]. 162

Considering that we would like to conduct a large-scale study involving a large number 163

of embeddings to obtain statistically meaningful comparisons, linear transformations are 164

computationally attractive. We defer the study of efficient non-linear transformation 165

learning methods to future work. 166

3.1 Learning Linear Transformations 167

Let us consider two word embedding learning methods, which we refer to as the source 168

(S) and the target (T ) embedding learning methods, for learning word embeddings for a 169

vocabulary V = {wi}ni=1 consisting of n words. For a word wi, let us denote the 170

embeddings learnt by S and T respectively by vectors w
(S)
i ∈ Rd, and w

(T )
i ∈ Rp

171

(d 6= p in general). We arrange the embeddings learnt by S as rows to create a matrix 172

S ∈ Rn×d. Likewise, the embeddings learnt by T are arranged as rows to create a 173

matrix T ∈ Rn×p. Then, we propose a method to learn a linear transformation from S 174

to T , described by a transformation matrix C ∈ Rd×p, which minimizes the 175

transformation loss, J(C), given by (1). 176

J(C) = ||SC−T||2F + λ||C||2F (1)

Here, λ ∈ R is the l2 regularization coefficient, and ||A||F =
√
tr(A>A) is the 177

Frobenius norm of A. 178
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(1) defines a multivariate regularized least square problem [26] where, C can be seen 179

as a linear projection from S to T . Although we described the transformation learning 180

problem in (1) as learning a projection from S to T , the inverse transformation can be 181

learnt by simply swapping S and T in (1). 182

(1) can be written using matrix trace as follows: 183

J(C) = tr
(
(SC−T)(SC−T)>

)
+ λ tr

(
C>C

)
(2)

From (2) we can compute the partial derivative of the loss w.r.t. C as follows: 184

∂J

∂C
= 2S>SC− 2S>T+ 2λC (3)

By setting ∂J
∂C to zero we can compute C in closed-form as follows: 185

C = (S>S+ λId)
−1

S>T (4)

Here, Id ∈ Rd×d is a unit matrix. 186

For the counting-based embeddings, which are sparse and high-dimensional, S>S 187

results in a dense n× n matrix. Therefore, the inversion of a possibly dense matrix in 188

the size of the vocabulary required by (4), is computationally costly in practice, except 189

for the smallest of corpora. 190

In practice, however, stable numerical solutions can be found efficiently by using an 191

SGD algorithm. A key idea is that the objective function is decomposable as 192

J =

n∑
i=1

J̃i, J̃i = ||Csi − ti||2F +
λ

n
||C||2F , (5)

where si and ti are the i-th row vector of S and T, respectively. By constructing the 193

gradient of J̃i instead of J , we can update C in a stochastic way as follows: 194

C(t+1) = C(t) − η(t) ∂J̃
∂C

(6)

Here, the superscript t denotes the value at the t-th iteration, and η(t) is the learning 195

rate, scheduled using AdaGrad [27]. The stochastic gradient ∂J̃
∂C is written in a similar 196

manner to the batch gradient (3). 197

Once a linear transformation matrix C is learnt between a pair of source and target 198

embedding methods, given the source embedding w(S) of a word w, we can predict its 199

target embedding, ŵ(T ) using (7). 200

ŵ(T ) = Cw(S) (7)

3.2 Comparing Word Embeddings 201

The method proposed in Section 3.1 for learning a linear transformation between two 202

given word embeddings S and T can be used to compare arbitrary embedding learning 203

methods. Specifically, we can first create word embeddings using S and T for a 204

common set of words, and use the method described in Section 3.1 to learn a linear 205

transformation C. However, as representative cases, we focus on linear transformations 206

between three counting-based word embedding methods (RAW, LOG, PPMI) and 207

three popular prediction-based word embedding methods (SGNS, CBOW, and 208

GloVe) as described next. 209
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Counting-based Embeddings 210

RAW: We create distributional word representations by representing each target word 211

ui using the words vj that co-occur with ui within some contextual window in a 212

corpus. The value of the j-th dimension of the embedding representing ui is set to 213

the total number of co-occurrences, h(ui, vj), between ui and vj in the entire 214

corpus. 215

LOG: The value of the j-th dimension of this embedding representing ui is set to 216

log(h(ui, vj) + 1). Here, the +1 term prevents the logarithm from exploding when 217

h(ui, vj) = 0. The logarithmic co-occurrence weighting has been found to be 218

effective for down-weighting co-occurrences with high-frequency words [2]. 219

PPMI: The value of the j-th dimension of this embedding representing ui is set to to 220

the positive pointwise mutual information (PPMI) between ui and vj computed 221

by, 222

PPMI(ui, vj) = max

(
0, log

(
p(ui, vj)

p(ui)p(vj)

))
. (8)

Here, the probabilities p(ui, vj), p(ui), p(vj) are estimated using corpus counts. If 223

the occurrence of ui subsumes the occurrence of vj (i.e. p(ui, vj) = p(ui)), then 224

PPMI simplifies to PPMI(ui, vj) = max
(
0, log

(
1

p(vj)

))
. Therefore, if the 225

occurrence of vj is rare (i.e. p(vj) ≈ 0), then its PPMI value with ui becomes 226

higher. This shows that PPMI has a tendency to overestimate rare co-occurrences, 227

which can be problematic when co-occurrence counts are sparse. 228

Prediction-based Embeddings 229

SGNS: Skip-gram with negative sampling (SGNS) [19] learns target and context word 230

embeddings by predicting the context words that co-occur with a target word in 231

some context. The probability p(vj |ui) of observing the context word vj in the 232

proximity of a target word ui is computed using the inner-product between the 233

corresponding embeddings as given by (9). 234

p(vj |ui) =
exp(ui

>vj)∑
j exp(ui

>vj)
(9)

The normalization term in (9) requires a summation over all the context words, 235

which is computationally costly. Alternatively, SGNS uses a negative sampling 236

method based on noise contrastive estimation [28], where the log-likelihood over 237

the entire corpus is maximized by comparing each target word with a randomly 238

selected few context words that do not co-occur in a given context. 239

CBOW: In contrast to SGNS, the continuous bag-of-words model (CBOW) [4] 240

predicts all context words vj in a given context that co-occur with a target word 241

ui. Similar to (9), the joint conditional probability, p(v1, . . . , vj |ui), is computed 242

using a log-bilinear function where the context word embeddings are concatenated 243

to create a single context vector with which the inner-product of ui is computed. 244

GloVe: Unlike SGNS and CBOW which learn word embeddings by predicting the 245

co-occurrences between target and context words within a specific local context, 246

the global vector representation (GloVe) [3] method learns word embeddings by 247

predicting the global co-occurrence counts between a target word ui, and a 248

context word vj , obtained from the entire corpus. Specifically, GloVe learns word 249
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embeddings ui, vj by minimizing the squared loss taken over all pairs of target 250

and context words as given by (10). 251

J({ui}ni=1, {vj}nj=1) =
∑
i,j

(
ui
>vj − log h(ui, vj)

)2
(10)

4 Experiments 252

Our proposed method learns a linear transformation between two pre-trained sets of 253

word embeddings representing a common set of words. However, direct manual 254

evaluation of linear transformations is infeasible due to the scale of the transformation 255

matrix. Instead, we resort to a series of indirect extrinsic evaluation tasks as described 256

next. 257

In Section 4.1, we evaluate the ability of the learnt linear transformation C to 258

predict the target embedding w(T ), of a word, w, given its source embedding w(S)
259

using (7). This experiment reveals (a) how well C fits to train word embeddings, 260

thereby demonstrating the ability to linearly transform embeddings of different 261

categories of words such as by frequency in a corpus, POS category, and polysemy, and 262

(b) how well C can predict the target embedding for unseen test words. 263

In Section 4.2, we compare the level of semantic information retained during the 264

transformation learning process by evaluating the predicted target embeddings using 265

two standard evaluation tasks for word embeddings: semantic similarity measurement, 266

and word-analogy detection. 267

4.1 Predicting Embeddings for Novel Words 268

We use the ukWaC (http://wacky.sslmit.unibo.it/doku.php?id=corpora), a ca. 2 269

billion token corpus consisting of a Web crawl from the .uk domain. It has been used 270

extensively in prior work on word embedding learning. We trained word embeddings for 271

GloVe (http://nlp.stanford.edu/projects/glove/), CBOW, and SGNS 272

(https://code.google.com/archive/p/word2vec/) using the original implementations. 273

From ukWaC, we randomly select n = 434, 804 words that occur at least 20 times as 274

train words and select the corresponding prediction-based embeddings. We use all 275

words that co-occur within a five-token window with the train words to create 276

d = 434, 826 dimensional counting-based embeddings. Word embeddings are randomly 277

initialised sampling from a zero mean and unit variance Gaussian distribution. Negative 278

sampling rate is set to 5 in SGNS and CBOW (i.e. 5 negative samples are selected per 279

single occurrence of a target word). Due to space limitations, we report results with 280

p = 300 dimensional embeddings for all three prediction-based embedding methods. 281

Although in theory it is possible to use the proposed method to learn 282

transformations between two counting-based word embeddings, or two prediction-based 283

word embeddings as well, our goal in this paper is to understand the differences between 284

counting-based and prediction-based embeddings. Therefore, we set the source 285

embedding S to each of the counting-based embeddings (RAW, LOG, PPMI) and 286

target embeddings to each of the prediction-based embeddings (SGNS, CBOW, 287

GloVe), and learn separate linear transformations C for each S-T pair. 288

To obtain C, we use Vowpal Wabbit 289

(https://github.com/JohnLangford/vowpal_wabbit), a linear regression solver based on 290

SGD. In this algorithm, we have two hyperparameters: regularization coefficient λ in (1) 291

and the number of learning passes π in SGD. We tuned these hyperparameters by grid 292

search. Specifically, we randomly picked three hundred words for validation, and based 293

on that we selected the best combination of λ and π from λ ∈ {10−2, 10−3, . . . , 10−6} 294

and π ∈ {20, 21, . . . , 26}. Selected hyperparameters are shown in Table 1. From Table 1 295
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we see that λ is relatively insensitive to the source and target embeddings, whereas 296

smaller π are suitable for RAW source embeddings. 297

The testing error was then calculated against three hundred words selected as 298

follows. We first compute the frequencies of words in the corpus and order the words in 299

the descending order of their frequencies. Next, we select 100 words from high-frequency 300

range (i.e. the words whose ranks were in 1–10, 000) another 100 words from the 301

medium-frequency range (i.e. the words whose ranks were in 10, 001–20, 000), and 302

another 100 words from the low-frequency range (i.e. the words whose ranks were in 303

20, 001–30, 000). In particular, we ensure that the validation and test datasets do not 304

include any words from the similarity and analogy benchmarks used in the experiments 305

in Section 4.2. 306

To evaluate the accuracy of the predicted target embeddings using (7) with a learnt 307

transformation C, we compute the root mean square error (RMSE) between the 308

predicted, ŵ(T ), and target, w(T ) embeddings over a set of words, V, as follows: 309

RMSE =

√
1

|V|
∑
w∈V

∣∣∣∣∣∣ŵ(T ) −w(T )
∣∣∣∣∣∣2
2

(11)

If the RMSE between the projected embedding of a word and its target embedding is 310

small, then we can conclude that it is possible to linearly project from the source to the 311

target embedding for that particular word. By repeating this process over a large set of 312

words, and by computing the average RMSE for the entire set of words, we can 313

quantitatively evaluate the accuracy of the learnt linear transformation. 314

In Table 2, we compare the proposed method (Prop) against a random projection 315

baseline (Rand), where we project the d-dimensional source embeddings onto a 316

p-dimensional space using a random projection matrix, R ∈ Rd×p, in which each 317

element is randomly sampled from a standard (zero mean and unit variance) Gaussian 318

distribution. From Table 2, we see that both train and test error values for the 319

proposed method is smaller than that of the corresponding random projection. This 320

result shows that the proposed linear transformation learning method outperforms the 321

random projection baseline in both fitting the train word embeddings as well as 322

predicting the test word embeddings. 323

When we use the proposed method to learn linear transformations, among the three 324

counting-based embedding methods LOG gives the smallest test error for all 325

prediction-based target embedding methods, followed by PPMI, which has a tendency 326

to over-estimate rare co-occurrences. In particular, RAW has the largest test error 327

when predicting test word embeddings learnt using SGNS and CBOW. This result 328

shows that some form of a co-occurrence weighting method is necessary with 329

counting-based embeddings, if they are to be linearly transformed to prediction-based 330

embeddings. Interestingly, LOG performs best with GloVe, which can be seen as 331

factorizing a co-occurrence matrix containing the logarithms of the global co-occurrence 332

counts [21]. As for SGNS, which is shown to be factorizing a matrix with shifted PPMI 333

values [20], we do not see any significant differences between test errors reported for 334

LOG and PPMI. 335

LOG as the co-occurrence weighting method for the counting-based word 336

embedding method produces the lowest test prediction error with all of the 337

prediction-based word embeddings. Both SGNS and CBOW are log bi-linear models. 338

The logarithm of the co-occurrence probabilities estimated using those models are 339

proportional to the inner-product between the corresponding word embeddings. By 340

considering the log co-occurrences in the counting-based word embeddings, we can 341

better approximate the linearities present in those prediction-based embedding spaces. 342

To study the prediction error for different POS categories, we classify each test word 343

into one of the four POS categories, noun, verb, adjective, or adverb, according to the 344
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Table 1. The hyperparameters used in the prediction tasks.

T (pred) S (count) λ π

SGNS
RAW 10−4 2
LOG 10−4 64
PPMI 10−4 16

CBOW
RAW 10−4 16
LOG 10−5 64
PPMI 10−4 16

GloVe
RAW 10−5 1
LOG 10−5 32
PPMI 10−2 16

Table 2. Train and test RMSE values when predicting target embeddings (SGNS,
CBOW, GloVe) using different source embeddings (RAW, LOG, PPMI).

Method S SGNS CBOW GloVe
test train test train test train

Prop
RAW .200 .111 .151 .072 .332 .206
LOG .151 .095 .127 .060 .241 .178
PPMI .152 .090 .130 .065 .345 .218

Rand
RAW .230 .147 .169 .096 .358 .228
LOG .230 .147 .168 .096 .359 .228
PPMI .231 .147 .169 .096 .358 .228

POS category assigned to the first-ranked sense of that word in the WordNet 345

(https://wordnet.princeton.edu/). Next, we compute test error over the words 346

classified to each of the four POS categories as shown in Table 3. Although there are 347

slight variations in the prediction errors across different POS categories, an analysis of 348

variance (ANOVA) test shows that the differences to be statistically insignificant. 349

Therefore, we are unable to find any significant differences between the POS types. 350

Fig 1. Relationship between word frequency, reconstruction error (train RMSE), rank
of the target word in list of nearest neighbours (NBRank) computed using the projected
embeddings, and the number of senses according to the WordNet for each word. A
linear transformation is learnt between LOG source embedding and GloVe target
embedding using the proposed method.

Fig 1 shows the distributions of (a) the logarithm of the word frequency, (b) 351

reconstruction error (i.e. training RMSE), (c) rank of the target word in the list of 352

nearest neighbours computed using the projected embeddings, and (d) the number of 353

word senses. 354

For a word w ∈ V, we compute the cosine similarity between its projected word 355

embedding, ŵ(T ), and the target word embeddings u(T ) of each word u ∈ V, and rank 356

u in the descending order of the similarity scores. If the target embedding of w is 357

ranked higher in this ranked list of nearest neighbours, then we can conclude that the 358

projected embeddings are similar to the actual target embeddings of words. Unlike the 359

RMSE-based evaluation we presented above, the rank of a word in the projected target 360

embedding space considers only the relative position of projected embeddings. Third 361

plot from the top in Fig 1 shows the logarithm of the rank in the nearest neighbour list 362

(log(NBRank)) (vertical axis) against the rank of the word according to its frequency in 363

the corpus (horizontal axis). From Fig 1, we see that for high frequent words (ranks up 364

to 105), the proposed method ranks the target word among the top 100 nearest 365
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Table 3. Testing RMSEs for different counting-based (count.) embeddings as the
source, and prediction-based (pred.) as the target for different POS categories.

T (pred) S (count) Noun Verb Adj. Advb.

SGNS
RAW 0.196 0.187 0.203 0.179
LOG 0.151 0.146 0.156 0.156
PPMI 0.152 0.144 0.152 0.125

CBOW
RAW 0.146 0.139 0.150 0.136
LOG 0.131 0.131 0.131 0.145
PPMI 0.127 0.119 0.127 0.113

GloVe
RAW 0.333 0.343 0.354 0.396
LOG 0.250 0.259 0.255 0.301
PPMI 0.346 0.339 0.350 0.337

neighbours. 366

We counted the number of word senses for each word in the WordNet to determine 367

the number of word senses per word. Words that do not appear in the WordNet are 368

ignored in this analysis. In the bottom plot in Fig 1, we show the number of different 369

senses of a word in the vertical axis, whereas the words are ranked by the number of 370

senses they have in the horizontal axis. From Fig 1, we see that except for a small 371

number of common words such as articles and prepositions placed at the first few 372

hundred words in the distribution, our proposed method accurately reconstructs the 373

original GloVe embeddings with small reconstruction errors, for a range of words. 374

Interestingly, even for polysemous words for which multi-prototype embeddings [29,30] 375

must be learnt can nevertheless be linearly transformed using the proposed method. 376

Similar distributions were obtained with SGNS and CBOW as the target embeddings. 377

4.2 Predicting Word Similarity and Analogy 378

Fig 2. Spearman correlation coefficients (y-axis) between the cosine similarity scores
computed using the learnt word embeddings and human ratings in the benchmark
datasets are shown for the CBOW embeddings as functions over the number of SGD
iterations (x-axis).

Fig 3. Spearman correlation coefficients (y-axis) between the cosine similarity scores
computed using the learnt word embeddings and human ratings in the benchmark
datasets are shown for the SG embeddings as functions over the number of SGD
iterations (x-axis).

Fig 4. Spearman correlation coefficients (y-axis) between the cosine similarity scores
computed using the learnt word embeddings and human ratings in the benchmark
datasets are shown for the GloVe embeddings as functions over the number of SGD
iterations (x-axis).

To evaluate the amount of word semantics preserved during the linear 379

transformation process, we evaluate the predicted target embeddings in two tasks: 380

semantic similarity measurement, and word analogy detection. Both those tasks are 381

frequently used as benchmarks for evaluating word embedding learning methods [31, 32]. 382

For the similarity measurement task we use seven datasets: Rubenstein-Goodenough 383

(rg, 65 word-pairs) [33], Miller-Charles (mc, 30 word-pairs) [34], rare words dataset 384
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Fig 5. Accuracies (y-axis) for solving word analogy problems on the Google dataset
(semantic analogies, syntactic analogies, and all analogies including semantic and
syntactic), and max-diff scores on the SemEval dataset are shown for the CBOW
embeddings as functions over the number of SGD iterations (x-axis). CosAdd method is
used on the Google dataset to predict the correct answer for the word analogy questions.

Fig 6. Accuracies (y-axis) for solving word analogy problems on the Google dataset
(semantic analogies, syntactic analogies, and all analogies including semantic and
syntactic), and max-diff scores on the SemEval dataset are shown for the SG
embeddings as functions over the number of SGD iterations (x-axis). CosAdd method is
used on the Google dataset to predict the correct answer for the word analogy questions.

Fig 7. Accuracies (y-axis) for solving word analogy problems on the Google dataset
(semantic analogies, syntactic analogies, and all analogies including semantic and
syntactic), and max-diff scores on the SemEval dataset are shown for the GloVe
embeddings as functions over the number of SGD iterations (x-axis). CosAdd method is
used on the Google dataset to predict the correct answer for the word analogy questions.

(rw, 2034 word-pairs) [35], Stanford’s contextual word similarities (scws, 2023 385

word-pairs) [16], SimLex-999 (simlex, 999 word-pairs) [36], WordSimilarity-353 dataset 386

(ws, 353 word-pairs) [37], and the men test collection (3000 word-pairs) [38]. 387

Each word-pair in those datasets has a manually assigned similarity score. We 388

compute the cosine similarity, cos(û(T ), v̂(T )), between the predicted target embeddings 389

for the two words u and v in a word-pair, and use the Spearman correlation coefficient 390

as the evaluation measure to compare predicted similarity scores against the gold 391

standard ratings. Spearman correlation coefficient ranges in [−1, 1], and high values 392

indicate a better agreement of the predicted target embeddings with the human notion 393

of semantic similarity. 394

Figs 2, 3, and 4 show the Spearman correlation coefficients for the similarity 395

predictions made using a linear transformation learnt between the counting-based 396

source embedding LOG, and the three prediction-based target embeddings respectively 397

CBOW, SGNS, and GloVe. The level of correlation obtained by the original target 398

embedding is shown as a dashed horizontal line in each subplot, whereas the 399

performance of the linear transformation after π number of SGD iterations is shown as 400

a solid line. Overall, we see that the correlation coefficients increase with π, reaching 401

the level of the original prediction-based embeddings after 500 iterations. Therefore, 402

with a sufficiently large number of SGD iterations, the proposed method can learn 403

linear transformations that capture almost all the word semantics encoded in the 404

original prediction-based target embeddings. We use the Google word analogy 405

dataset [19], consisting of semantic (8869 questions) and syntactic (10675 questions) 406

proportional analogies, and the SemEval 2012 Task 2 dataset (SemEval, 79 407

categories) [39] to evaluate the ability to solve word-analogy problems by the proposed 408

linear transformation learning method. In Figs 5, 6, and 7, we report word analogy 409

solving accuracies for the CosMult method that has shown to produce the best 410

results [40] respectively for CBOW, SG, and GloVe embeddings. 411

Figs 5, 6, and 7 show the scores (percentage of the correctly answered analogy 412

questions on the Google dataset, and the correlation score computed using the official 413

evaluation tool for the SemEval dataset) for the different methods under varying 414

numbers of SGD iterations. Likewise in the semantic similarity experiment, here too we 415

see that with sufficiently large numbers of SGD iterations, the linear transformations 416

learnt using the proposed method can capture the semantics encoded in the original 417
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target embeddings. Although for many other tasks and projected embeddings the 418

performance is lower compared to the original target embeddings, surprisingly, in a few 419

tasks (semantic and SemEval for CBOW, and SemEval for GloVe), the 420

performance is even better than the original embeddings. This tells us that the original 421

embedding is not necessarily optimal, and our proposed method can learn better 422

embeddings in some cases. One possible reason for this improvement could be because 423

of the `2 regularisation and SGD learning, which prevent overfitting to the original 424

embedding space. 425

4.3 Visualising the Learnt Projections 426

Projection matrix C projects counting-based source embeddings to prediction-based 427

target embeddings. In counting-based embeddings, each dimension is explicitly 428

annotated with a single word representing some semantic concept, whereas in 429

prediction-based embeddings the semantics of each dimension remain implicit. 430

Therefore, the projection matrix C can be thought of as a mapping between these two 431

explicit and implicit embedding spaces. To visualise this relationship, we compute the 432

heatmap for some selected rows of C, corresponding to different context words that 433

appear as dimensions in the counting-based source word embeddings. If the mapping 434

between the two embedding spaces is accurately learnt, we would expect the words that 435

belong to the same class to have the same active dimensions. 436

Following prior work on word representation learning [41,42], in Figs 8 and 9 show 437

the heatmaps respectively for fruits vs. colours, and animals vs. countries. From both 438

figures we see that dimensions of the prediction-based embeddings (shown in the 439

horizontal axis) that correspond to the dimensions of the counting-based embeddings 440

(shown in the vertical axis) are different for each context word compared. Note that the 441

ordering of dimensions in each axis is arbitrary and we have used different permutations 442

in each figure to emphasise the association. 443

Fig 8. Heatmap for the projections for fruits vs. colours.

The heatmaps shown in Figs 8 and 9 can be considered as an interpretation of the 444

dimensions in the counting-based embedding in terms of the dimensions in the 445

prediction-based embedding. We see from the two figures that the same latent 446

dimension in the prediction-based embedding is associated with multiple dimensions in 447

the counting-based embedding. Considering that the dimensionality of the 448

prediction-based embedding (ca. 300) is much smaller than that of the counting-based 449

embedding (ca. 434k), it is natural that a single latent dimension must encode a 450

broader class of semantics represented by multiple dimensions in the counting-based 451

embedding if the two embeddings to capture the same information. Simply ranking 452

dimensions in the counting-based embedding by the values of the elements in C is 453

inadequate to obtain meaningful associations because elements in C can be both 454

positive as well as negative. More advance alignment techniques such as bipartite 455

graph-matching using max-flow methods could be useful here. 456

5 Conclusions 457

We proposed a method to learn linear transformations between several counting-based 458

and prediction-based word embeddings. Our proposed method does not depend on the 459

underlining word embedding learning algorithm, hence applicable when finding a linear 460

transformation between any two pre-trained word embeddings. This property is 461
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Fig 9. Heatmap for the projections for animals vs. countries.

particularly attractive because the proposed method can be used as a post-processing 462

analysis tool for aligning the dimensions between different word embeddings. 463

We specifically considered the scenario where we would like to find a linear 464

transformation between prediction-based word embeddings where the dimensions are 465

implicit and randomly initialised, and counting-based word embeddings where the 466

dimensions are explicitly annotated with words. This mapping is useful for providing an 467

interpretation for the implicit dimensions in prediction-based word embeddings using 468

the explicit dimensions in the counting-based word embeddings. It shows that each 469

context word in the counting-based embedding can be associated with a subset of the 470

dimensions in the prediction-based embedding. 471

Our experimental results show that counting-based embeddings of most words can 472

be linearly projected to the vector space spanned by the prediction-based word 473

embeddings. This result is important given that the two types of word embeddings have 474

shown different performances in different tasks, and prior work analysing those 475

differences [1, 10] have hinted at the close relationship between the two types of 476

embeddings. Moreover, experimental results on similarity and analogy benchmarks show 477

that most of the semantic information in the target embeddings can be captured by the 478

proposed method. Visualisations of the projections learnt by the proposed method for 479

different word classes show that indeed the learnt projections demonstrate a high-level 480

of structure organised by the prototypical semantics represented by those word classes. 481

Our work open up several interesting future research directions to the NLP 482

community. 483

• Although linear transformations are simple to interpret and efficient to compute 484

over large vocabularies, it is by no means the only possible transformation 485

between two word embedding spaces. Nonlinear transformations can capture 486

richer relationships between vector spaces as demonstrated repeatedly by the 487

recent successes of deep neural networks. A natural next step would be to explore 488

the possibilities of learning a nonlinear transformation between counting-based 489

and prediction-based word embedding spaces. 490

• The linear transformation we have learnt using our proposed method is a global 491

transformation that applies to all word embeddings equally. However, as evident 492

by the numerous uses of distributional hypothesis that postulates the meaning of 493

a word can be estimated simply by looking at its nearest neighbours, there is a 494

high degree of locality in natural language semantic spaces. Considering this 495

observation, another research direction would be to learn locally-linear 496

transformations [43] between word embedding spaces. 497

• Our analysis shows the existence of a linear transformation at macro-level across 498

different classes of words such as by frequency, level of ambiguity, and 499

part-of-speech. However, it remains an interesting open question as to what 500

specific words can be linearly transformed and to what extent. Such a micro-level 501

analysis would reveal further insights into the relationships between 502

counting-based and prediction-based embeddings. 503

• Equation (1) can be extended to incorporate multiple target embeddings by 504

adding loss terms corresponding to the projection between each target embedding 505

and the single source embedding. The transformation matrix C can then be 506

shared across the different loss terms such that we learn a single consistent linear 507

transformation from the source embedding to all of the target embeddings. 508
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• Our proposed method can be used to find a liner transformation between any two 509

embeddings, not limited to a counting-based source embedding and a 510

prediction-based target embedding. This is useful to quantitatively understand 511

how one set of embeddings is related to another set of embeddings created using 512

different embedding learning methods, different resources, or different random 513

initialisations of the same algorithm. Two embedding learning algorithms might 514

appear to be different in the objectives that they optimise for and/or the 515

optimisation techniques that they use. However, when trained on the same 516

resources, they might produce similar embeddings, different only by a linear 517

transformation. Our proposed method can be used as a tool to further investigate 518

the embeddings learnt by different embedding learning algorithms. As a special 519

case of such an analysis, the coefficients of the projection matrix provides an 520

interpretation for the alignment between dimensions in the source and target 521

embeddings. The visualisations shown in the paper are a first attempt at such an 522

analysis. We plan to peruse those research directions in our future work. 523
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